1,649 research outputs found

    A high-efficiency spin-resolved phototemission spectrometer combining time-of-flight spectroscopy with exchange-scattering polarimetry

    Full text link
    We describe a spin-resolved electron spectrometer capable of uniquely efficient and high energy resolution measurements. Spin analysis is obtained through polarimetry based on low-energy exchange scattering from a ferromagnetic thin-film target. This approach can achieve a similar analyzing power (Sherman function) as state-of-the-art Mott scattering polarimeters, but with as much as 100 times improved efficiency due to increased reflectivity. Performance is further enhanced by integrating the polarimeter into a time-of-flight (TOF) based energy analysis scheme with a precise and flexible electrostatic lens system. The parallel acquisition of a range of electron kinetic energies afforded by the TOF approach results in an order of magnitude (or more) increase in efficiency compared to hemispherical analyzers. The lens system additionally features a 90{\deg} bandpass filter, which by removing unwanted parts of the photoelectron distribution allows the TOF technique to be performed at low electron drift energy and high energy resolution within a wide range of experimental parameters. The spectrometer is ideally suited for high-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES), and initial results are shown. The TOF approach makes the spectrometer especially ideal for time-resolved spin-ARPES experiments.Comment: 16 pages, 11 figure

    Methyl CpG Binding Domain Ultra-Sequencing: a novel method for identifying inter-individual and cell-type-specific variation in DNA methylation

    Get PDF
    Experience-dependent changes in DNA methylation can exert profound effects on neuronal function and behaviour. A single learning event can induce a variety of DNA modifications within the neuronal genome, some of which may be common to all individuals experiencing the event, whereas others may occur in a subset of individuals. Variations in experience-induced DNA methylation may subsequently confer increased vulnerability or resilience to the development of neuropsychiatric disorders. However, the detection of experience-dependent changes in DNA methylation in the brain has been hindered by the interrogation of heterogeneous cell populations, regional differences in epigenetic states and the use of pooled tissue obtained from multiple individuals. Methyl CpG Binding Domain Ultra-Sequencing (MBD Ultra-Seq) overcomes current limitations on genome-wide epigenetic profiling by incorporating fluorescence-activated cell sorting and sample-specific barcoding to examine cell-type-specific CpG methylation in discrete brain regions of individuals. We demonstrate the value of this method by characterizing differences in 5-methylcytosine (5mC) in neurons and non-neurons of the ventromedial prefrontal cortex of individual adult C57BL/6 mice, using as little as 50 ng of genomic DNA per sample. We find that the neuronal methylome is characterized by greater CpG methylation as well as the enrichment of 5mC within intergenic loci. In conclusion, MBD Ultra-Seq is a robust method for detecting DNA methylation in neurons derived from discrete brain regions of individual animals. This protocol will facilitate the detection of experience-dependent changes in DNA methylation in a variety of behavioural paradigms and help identify aberrant experience-induced DNA methylation that may underlie risk and resiliency to neuropsychiatric disease

    Highly resolved intravital striped-illumination microscopy of germinal centers

    Get PDF
    Monitoring cellular communication by intravital deep-tissue multi-photon microscopy is the key for understanding the fate of immune cells within thick tissue samples and organs in health and disease. By controlling the scanning pattern in multi-photon microscopy and applying appropriate numerical algorithms, we developed a striped-illumination approach, which enabled us to achieve 3-fold better axial resolution and improved signal-to-noise ratio, i.e. contrast, in more than 100 µm tissue depth within highly scattering tissue of lymphoid organs as compared to standard multi-photon microscopy. The acquisition speed as well as photobleaching and photodamage effects were similar to standard photo-multiplier-based technique, whereas the imaging depth was slightly lower due to the use of field detectors. By using the striped-illumination approach, we are able to observe the dynamics of immune complex deposits on secondary follicular dendritic cells - on the level of a few protein molecules in germinal centers

    Selective Detection of NADPH Oxidase in Polymorphonuclear Cells by Means of NAD(P)H-Based Fluorescence Lifetime Imaging

    Get PDF
    NADPH oxidase (NOX2) is a multisubunit membrane-bound enzyme complex that, upon assembly in activated cells, catalyses the reduction of free oxygen to its superoxide anion, which further leads to reactive oxygen species (ROS) that are toxic to invading pathogens, for example, the fungus Aspergillus fumigatus. Polymorphonuclear cells (PMNs) employ both nonoxidative and oxidative mechanisms to clear this fungus from the lung. The oxidative mechanisms mainly depend on the proper assembly and function of NOX2. We identified for the first time the NAD(P)H-dependent enzymes involved in such oxidative mechanisms by means of biexponential NAD(P)H-fluorescence lifetime imaging (FLIM). A specific fluorescence lifetime of 3670±140 picoseconds as compared to 1870 picoseconds for NAD(P)H bound to mitochondrial enzymes could be associated with NADPH bound to oxidative enzymes in activated PMNs. Due to its predominance in PMNs and due to the use of selective activators and inhibitors, we strongly believe that this specific lifetime mainly originates from NOX2. Our experiments also revealed the high site specificity of the NOX2 assembly and, thus, of the ROS production as well as the dynamic nature of these phenomena. On the example of NADPH oxidase, we demonstrate the potential of NAD(P)H-based FLIM in selectively investigating enzymes during their cellular function

    Intra-week spatial-temporal patterns of crime

    Get PDF
    Since its original publication, routine activity theory has proven most instructive for understanding temporal patterns in crime. The most prominent of the temporal crime patterns investigated is seasonality: crime (most often assault) increases during the summer months and decreases once routine activities are less often outside. Despite the rather widespread literature on the seasonality of crime, there is very little research investigating temporal patterns of crime at shorter time intervals such as within the week or even within the day. This paper contributes to this literature through a spatial-temporal analysis of crime patterns for different days of the week. It is found that temporal patterns are present for different days of the week (more crime on weekends, as would be expected) and there is a spatial component to that temporal change. Specifically, aside from robbery and sexual assault at the micro-spatial unit of analysis (street segments) the spatial patterns of crime changed. With regard to the spatial pattern changes, we found that assaults and theft from vehicle had their spatial patterns change in predictable ways on Saturdays: assaults increased in the bar district and theft from vehicles increased in the downtown and recreational car park areas

    Evidence of Neurotoxicity of Ecstasy: Sustained Effects on Electroencephalographic Activity in Polydrug Users

    Get PDF
    According to previous EEG reports of indicative disturbances in Alpha and Beta activities, a systematic search for distinct EEG abnormalities in a broader population of Ecstasy users may especially corroborate the presumed specific neurotoxicity of Ecstasy in humans.105 poly-drug consumers with former Ecstasy use and 41 persons with comparable drug history without Ecstasy use, and 11 drug naives were investigated for EEG features. Conventional EEG derivations of 19 electrodes according to the 10-20-system were conducted. Besides standard EEG bands, quantitative EEG analyses of 1-Hz-subdivided power ranges of Alpha, Theta and Beta bands have been considered.Ecstasy users with medium and high cumulative Ecstasy doses revealed an increase in Theta and lower Alpha activities, significant increases in Beta activities, and a reduction of background activity. Ecstasy users with low cumulative Ecstasy doses showed a significant Alpha activity at 11 Hz. Interestingly, the spectral power of low frequencies in medium and high Ecstasy users was already significantly increased in the early phase of EEG recording. Statistical analyses suggested the main effect of Ecstasy to EEG results.Our data from a major sample of Ecstasy users support previous data revealing alterations of EEG frequency spectrum due rather to neurotoxic effects of Ecstasy on serotonergic systems in more detail. Accordingly, our data may be in line with the observation of attentional and memory impairments in Ecstasy users with moderate to high misuse. Despite the methodological problem of polydrug use also in our approach, our EEG results may be indicative of the neuropathophysiological background of the reported memory and attentional deficits in Ecstasy abusers. Overall, our findings may suggest the usefulness of EEG in diagnostic approaches in assessing neurotoxic sequela of this common drug abuse

    Spatio-temporal crime hotspots and the ambient population

    Get PDF
    It is well known that, due to that inherent differences in their underlying causal mechanisms, different types of crime will have variable impacts on different groups of people. Furthermore, the locations of vulnerable groups of people are highly temporally dynamic. Hence an accurate estimate of the true population at risk in a given place and time is vital for reliable crime rate calculation and hotspot generation. However, the choice of denominator is fraught with difficulty because data describing popular movements, rather than simply residential location, are limited. This research will make use of new ‘crowd-sourced’ data in an attempt to create more accurate estimates of the population at risk for mobile crimes such as street robbery. Importantly, these data are both spatially and temporally referenced and can therefore be used to estimate crime rate significance in both space and time. Spatio-temporal cluster hunting techniques will be used to identify crime hotspots that are significant given the size of the ambient population in the area at the time

    Distribution of the putative virulence factor encoding gene sheta in Staphylococcus hyicus strains of various origins

    Get PDF
    In the present study, Staphylococcus (S.) hyicus strains isolated in Russia (n = 23) and Germany (n = 17) were investigated for the prevalence of the previously described genes sheta and shetb. Sheta was detected in 16 S. hyicus strains. Sheta-positive strains were mainly found among strains isolated from exudative epidermitis, and frequently together with the exfoliative toxin-encoding genes exhD and exhC. Partial sequencing of sheta in a single S. hyicus strain revealed an almost complete match with the sheta sequence obtained from GenBank. None of the S. hyicus strains displayed a positive reaction with the shetb-specific oligonucleotide primer used in the present study. According to the present results, the exotoxin encoding gene sheta seems to be distributed among S. hyicus strains in Russia and Germany. The toxigenic potential of this exotoxin, which does not have the classical structure of a staphylococcal exfoliative toxin, remains to be elucidated
    corecore