333 research outputs found

    Dynamics of Metallic Particle Contamination in Gas Insulated Substation (GIS)

    Get PDF
    This paper analyses the movement of free conducting particles inside a single phase Gas Insulated Bus duct(GIB).A two dimensional mathematical model was proposed for determining the movement pattern of metallic particle in GIB by considering all the forces acting on the particle like gravitational, drag and the electric field forces. These particles may be free to move in the electric field or may be fixed on the conductors, thus enhancing local surface fields. Electric fields at the instantaneous contaminated particle locations were computed using Charge Simulation Method (CSM).To determine the particle trajectory in a single phase Gas Insulated Bus duct (GIB), an enclosure diameter 152 mm and conductor diameter 55 mm is considered. The simulation of the particle movement was carried under different AC voltage levels like 100KV, 132KV, 145KV and 175KV class enclosure of GIB for aluminum, copper and silver particles. The results of the simulation have been presented and analyzed in this paper

    Fault diagnosis of antifriction bearings through sound signals using support vector machine

    Get PDF
    Bearings constitute a crucial part of machinery that need to be continuously monitored. Major breakdowns can be prevented if bearing defects are identified at the earlier stage. Sound signals of the bearings can be used to continuously monitor bearing life. This paper uses sound signals acquired in bearings under healthy and simulated faulty conditions for the purpose of fault diagnosis through machine learning approach. The statistical features were extracted from the sound signals. Significantly important features were selected using J48 decision tree algorithm. Support Vector Machine (SVM) is used as a classifier. The selected features were given as inputs for the c-SVM and ν-SVM (nu – SVM) model of SVM and their classification accuracies were compare

    Folding regulates autoprocessing of HIV-1 protease precursor

    Get PDF
    Autoprocessing of HIV-1 protease (PR) precursors is a crucial step in the generation of the mature protease. Very little is known regarding the molecular mechanism and regulation of this important process in the viral life cycle. In this context we report here the first and complete residue level investigations on the structural and folding characteristics of the 17-kDa precursor TFR-PR-Cnn (161 residues) of HIV-1 protease. The precursor shows autoprocessing activity indicating that the solution has a certain population of the folded active dimer. Removal of the 5-residue extension, Cnn at the C-terminal of PR enhanced the activity to some extent. However, NMR structural characterization of the precursor containing a mutation, D25N in the PR at pH 5.2 and 32 °C under different conditions of partial and complete denaturation by urea, indicate that the precursor has a high tendency to be unfolded. The major population in the ensemble displays some weak folding propensities in both the TFR and the PR regions, and many of these in the PR region are the non-native type. As both D25N mutant and wild-type PR are known to fold efficiently to the same native dimeric form, we infer that TFR cleavage enables removal of the non-native type of preferences in the PR domain to cause constructive folding of the protein. These results indicate that intrinsic structural and folding preferences in the precursor would have important regulatory roles in the autoprocessing reaction and generation of the mature enzyme

    Structural characterization of the large soluble oligomers of the GTPase effector domain of dynamin

    Get PDF
    Dynamin, a protein playing crucial roles in endocytosis, oligomerizes to form spirals around the necks of incipient vesicles and helps their scission from membranes. This oligomerization is known to be mediated by the GTPase effector domain (GED). Here we have characterized the structural features of recombinant GED using a variety of biophysical methods. Gel filtration and dynamic light scattering experiments indicate that in solution, the GED has an intrinsic tendency to oligomerize. It forms large soluble oligomers (molecular mass > 600 kDa). Interestingly, they exist in equilibrium with the monomer, the equilibrium being largely in favour of the oligomers. This equilibrium, observed for the first time for GED, may have regulatory implications for dynamin function. From the circular dichroism measurements the multimers are seen to have a high helical content. From multidimensional NMR analysis we have determined that about 30 residues in the monomeric units constituting the oligomers are flexible, and these include a 17 residue stretch near the N-terminal. This contains two short segments with helical propensities in an otherwise dynamic structure. Negatively charged SDS micelles cause dissociation of the oligomers into monomers, and interestingly, the helical characteristics of the oligomer are completely retained in the individual monomers. The segments along the chain that are likely to form helices have been predicted from five different algorithms, all of which identify two long stretches. Surface electrostatic potential calculation for these helices reveals that there is a distribution of neutral, positive and negative potentials, suggesting that both electrostatic and hydrophobic interactions could be playing important roles in the oligomer core formation. A single point mutation, I697A, in one of the helices inhibited oligomerization quite substantially, indicating firstly, a special role of this residue, and secondly, a decisive, though localized, contribution of hydrophobic interaction in the association process

    NMR of unfolded proteins

    Get PDF
    In the post-genomic era, as more and more genome sequences are becoming known and hectic efforts are underway to decode the information content in them, it is becoming increasingly evident that flexibility in proteins plays a crucial role in many of the biological functions. Many proteins have intrinsic disorder either wholly or in specific regions. It appears that this disorder may be important for regulatory functions of the proteins, on the one hand, and may help in directing the folding process to reach the compact native state, on the other. Nuclear magnetic resonance (NMR) has over the last two decades emerged as the sole, most powerful technique to help characterize these disordered protein systems. In this review, we first discuss the significance of disorder in proteins and then describe the recent developments in NMR methods for their characterization. A brief description of the results obtained on several disordered proteins is presented at the end

    Fault diagnosis of antifriction bearings through sound signals using support vector machine

    Get PDF
    Bearings constitute a crucial part of machinery that need to be continuously monitored. Major breakdowns can be prevented if bearing defects are identified at the earlier stage. Sound signals of the bearings can be used to continuously monitor bearing life. This paper uses sound signals acquired in bearings under healthy and simulated faulty conditions for the purpose of fault diagnosis through machine learning approach. The statistical features were extracted from the sound signals. Significantly important features were selected using J48 decision tree algorithm. Support Vector Machine (SVM) is used as a classifier. The selected features were given as inputs for the c-SVM and ν-SVM (nu – SVM) model of SVM and their classification accuracies were compare

    Stress-induced Metabolic Exchanges Between Complementary Bacterial Types Underly a Dynamic Mechanism of Inter-species Stress Resistance

    Get PDF
    Metabolic cross-feeding plays vital roles in promoting ecological diversity. While some microbes depend on exchanges of essential nutrients for growth, the forces driving the extensive cross-feeding needed to support the coexistence of free-living microbes are poorly understood. Here we characterize bacterial physiology under self-acidification and establish that extensive excretion of key metabolites following growth arrest provides a collaborative, inter-species mechanism of stress resistance. This collaboration occurs not only between species isolated from the same community, but also between unrelated species with complementary (glycolytic vs. gluconeogenic) modes of metabolism. Cultures of such communities progress through distinct phases of growth-dilution cycles, comprising of exponential growth, acidification-triggered growth arrest, collaborative deacidification, and growth recovery, with each phase involving different combinations of physiological states of individual species. Our findings challenge the steady-state view of ecosystems commonly portrayed in ecological models, offering an alternative dynamical view based on growth advantages of complementary species in different phases
    • …
    corecore