57,281 research outputs found
Radiation-Pressure Ejection of Planetary Nebulae in Asymptotic-Giant- Branch Stars
We have investigated the possibility that radiation pressure might trigger
planetary nebula (PN) ejection during helium-shell flashes in asymptotic-
giant-branch (AGB) stars. We find that the outward flux at the base of the
hydrogen envelope during a flash will reach the Eddington limit when the
envelope mass falls below a critical value that depends on the core mass and
composition. These results may help to explain the helium-burning PN nuclei
found in the Magellanic Clouds.Comment: 2 pages, 1 figure, to appear in PASP Conference Proceedings series of
IAU Symposium 190: "New Views of the Magellanic Clouds
Design and quality standards for custom hybrid microcircuits
A hybrid microcircuit standard was developed after a thorough review of applicable NASA, military, industry, and technical society specifications and standards and compilation of comments from technical reviewers throughout the hybrid industry. The draft of the standard submitted to the technical reviewers, the comments from the reviewers, and the completed standard are discussed
Molecular diffusion and slip boundary conditions at smooth surfaces with periodic and random nanoscale textures
The influence of periodic and random surface textures on the flow structure
and effective slip length in Newtonian fluids is investigated by molecular
dynamics (MD) simulations. We consider a situation where the typical pattern
size is smaller than the channel height and the local boundary conditions at
wetting and nonwetting regions are characterized by finite slip lengths. In
case of anisotropic patterns, transverse flow profiles are reported for flows
over alternating stripes of different wettability when the shear flow direction
is misaligned with respect to the stripe orientation. The angular dependence of
the effective slip length obtained from MD simulations is in good agreement
with hydrodynamic predictions provided that the stripe width is larger than
several molecular diameters. We found that the longitudinal component of the
slip velocity along the shear flow direction is proportional to the interfacial
diffusion coefficient of fluid monomers in that direction at equilibrium. In
case of random textures, the effective slip length and the diffusion
coefficient of fluid monomers in the first layer near the heterogeneous surface
depend sensitively on the total area of wetting regions.Comment: 30 pages, 11 figure
Vacuum polarization near cosmic string in RS2 brane world
Gravitational field of cosmic strings in theories with extra spatial
dimensions must differ significantly from that in the Einstein's theory. This
means that all gravity induced properties of cosmic strings need to be revised
too. Here we consider the effect of vacuum polarization outside a straight
infinitely thin cosmic string embedded in a RS2 brane world. Perturbation
technique combined with the method of dimensional regularization is used to
calculate for a massless scalar field.Comment: 8 pages, RevTeX
Electric welding torch Patent
Development of electric weeding torch with casing on one end to form inert gas shiel
Development of test methodology for dynamic mechanical analysis instrumentation
Dynamic mechanical analysis instrumentation was used for the development of specific test methodology in the determination of engineering parameters of selected materials, esp. plastics and elastomers, over a broad range of temperature with selected environment. The methodology for routine procedures was established with specific attention given to sample geometry, sample size, and mounting techniques. The basic software of the duPont 1090 thermal analyzer was used for data reduction which simplify the theoretical interpretation. Clamps were developed which allowed 'relative' damping during the cure cycle to be measured for the fiber-glass supported resin. The correlation of fracture energy 'toughness' (or impact strength) with the low temperature (glassy) relaxation responses for a 'rubber-modified' epoxy system was negative in result because the low-temperature dispersion mode (-80 C) of the modifier coincided with that of the epoxy matrix, making quantitative comparison unrealistic
Surface optical vortices
It is shown how the total internal reflection of orbital-angular-momentum-endowed light can lead to the generation of evanescent light possessing rotational properties in which the intensity distribution is firmly localized in the vicinity of the surface. The characteristics of these surface optical vortices depend on the form of the incident light and on the dielectric mismatch of the two media. The interference of surface optical vortices is shown to give rise to interesting phenomena, including pattern rotation akin to a surface optical Ferris wheel. Applications are envisaged to be in atom lithography, optical surface tweezers, and spanners
Optical Dipole Trapping beyond Rotating Wave Approximation: The case of Large Detuning
We show that the inclusion of counter-rotating terms, usually dropped in
evaluations of interaction of an electric dipole of a two level atom with the
electromagnetic field, leads to significant modifications of trapping potential
in the case of large detuning. The results are shown to be in excellent
numerical agreement with recent experimental findings, for the case of modes of
Laguerre-Gauss spatial profile.Comment: 13 pages, 2 figure
- …
