899 research outputs found
Education and health
Recent studies have tried to provide rigorous tests of causal effects of education levels on health status. Some of these studies show a significant causal impact of school-leaving age on mortality at later ages: their empirical strategy consists in using exogenous shocks on education levels resulting from changes in compulsory schooling regulations. Data from Insees Permanent Demographic Dataset can be used to attempt transposing this strategy to the French case. The two identifying shocks used are the Zay and Berthoin reforms. They have respectively raised the minimum school leaving age to 14 and 16 years. After having detailed the methological framework, we successively implement a non-parametric approach comparing cohorts born immediately before or immediately after the application of reforms, and a parametric two-stage approach using information from a larger part of our sample. None of these approaches confirm results of existing studies. Despite the fact that reforms have significantly increased school leaving ages, and despite the fact that subsequent declines in mortality have been observed, none of these declines appear to be significant. We conclude with a discussion on possible limitations of these two reforms as identifying devices, and make some suggestions for future research.Health, mortality, education, causal effect, regression discontinuities
Projective dynamics and classical gravitation
Given a real vector space V of finite dimension, together with a particular
homogeneous field of bivectors that we call a "field of projective forces", we
define a law of dynamics such that the position of the particle is a "ray" i.e.
a half-line drawn from the origin of V. The impulsion is a bivector whose
support is a 2-plane containing the ray. Throwing the particle with a given
initial impulsion defines a projective trajectory. It is a curve in the space
of rays S(V), together with an impulsion attached to each ray. In the simplest
example where the force is identically zero, the curve is a straight line and
the impulsion a constant bivector. A striking feature of projective dynamics
appears: the trajectories are not parameterized.
Among the projective force fields corresponding to a central force, the one
defining the Kepler problem is simpler than those corresponding to other
homogeneities. Here the thrown ray describes a quadratic cone whose section by
a hyperplane corresponds to a Keplerian conic. An original point of view on the
hidden symmetries of the Kepler problem emerges, and clarifies some remarks due
to Halphen and Appell. We also get the unexpected conclusion that there exists
a notion of divergence-free field of projective forces if and only if dim V=4.
No metric is involved in the axioms of projective dynamics.Comment: 20 pages, 4 figure
Projective dynamics and first integrals
We present the theory of tensors with Young tableau symmetry as an efficient
computational tool in dealing with the polynomial first integrals of a natural
system in classical mechanics. We relate a special kind of such first
integrals, already studied by Lundmark, to Beltrami's theorem about
projectively flat Riemannian manifolds. We set the ground for a new and simple
theory of the integrable systems having only quadratic first integrals. This
theory begins with two centered quadrics related by central projection, each
quadric being a model of a space of constant curvature. Finally, we present an
extension of these models to the case of degenerate quadratic forms.Comment: 39 pages, 2 figure
Action minimizing orbits in the n-body problem with simple choreography constraint
In 1999 Chenciner and Montgomery found a remarkably simple choreographic
motion for the planar 3-body problem (see \cite{CM}). In this solution 3 equal
masses travel on a eight shaped planar curve; this orbit is obtained minimizing
the action integral on the set of simple planar choreographies with some
special symmetry constraints. In this work our aim is to study the problem of
masses moving in \RR^d under an attractive force generated by a potential
of the kind , , with the only constraint to be a simple
choreography: if are the orbits then we impose the
existence of x \in H^1_{2 \pi}(\RR,\RR^d) such that q_i(t)=x(t+(i-1) \tau),
i=1,...,n, t \in \RR, where . In this setting, we first
prove that for every d,n \in \NN and , the lagrangian action
attains its absolute minimum on the planar circle. Next we deal with the
problem in a rotating frame and we show a reacher phenomenology: indeed while
for some values of the angular velocity minimizers are still circles, for
others the minima of the action are not anymore rigid motions.Comment: 24 pages; 4 figures; submitted to Nonlinearit
Bases for qudits from a nonstandard approach to SU(2)
Bases of finite-dimensional Hilbert spaces (in dimension d) of relevance for
quantum information and quantum computation are constructed from angular
momentum theory and su(2) Lie algebraic methods. We report on a formula for
deriving in one step the (1+p)p qupits (i.e., qudits with d = p a prime
integer) of a complete set of 1+p mutually unbiased bases in C^p. Repeated
application of the formula can be used for generating mutually unbiased bases
in C^d with d = p^e (e > or = 2) a power of a prime integer. A connection
between mutually unbiased bases and the unitary group SU(d) is briefly
discussed in the case d = p^e.Comment: From a talk presented at the 13th International Conference on
Symmetry Methods in Physics (Dubna, Russia, 6-9 July 2009) organized in
memory of Prof. Yurii Fedorovich Smirnov by the Bogoliubov Laboratory of
Theoretical Physics of the JINR and the ICAS at Yerevan State University
Statistical Mechanics of Vacancy and Interstitial Strings in Hexagonal Columnar Crystals
Columnar crystals contain defects in the form of vacancy/interstitial loops
or strings of vacancies and interstitials bounded by column ``heads'' and
``tails''. These defect strings are oriented by the columnar lattice and can
change size and shape by movement of the ends and forming kinks along the
length. Hence an analysis in terms of directed living polymers is appropriate
to study their size and shape distribution, volume fraction, etc. If the
entropy of transverse fluctuations overcomes the string line tension in the
crystalline phase, a string proliferation transition occurs, leading to a
supersolid phase. We estimate the wandering entropy and examine the behaviour
in the transition regime. We also calculate numerically the line tension of
various species of vacancies and interstitials in a triangular lattice for
power-law potentials as well as for a modified Bessel function interaction
between columns as occurs in the case of flux lines in type-II superconductors
or long polyelectrolytes in an ionic solution. We find that the centered
interstitial is the lowest energy defect for a very wide range of interactions;
the symmetric vacancy is preferred only for extremely short interaction ranges.Comment: 22 pages (revtex), 15 figures (encapsulated postscript
Antibacterial properties of Ag-TiO2 composite sol-gel coatings
This study reveals the connection between the silver-doping method, the resulting nature and amount of the silver dopant together with the structural properties and the long-term antibacterial activity of composite coatings.</p
- …