79 research outputs found

    Inverse analysis of asteroseismic data: a review

    Full text link
    Asteroseismology has emerged as the best way to characterize the global and internal properties of nearby stars. Often, this characterization is achieved by fitting stellar evolution models to asteroseismic observations. The star under investigation is then assumed to have the properties of the best-fitting model, such as its age. However, the models do not fit the observations perfectly. This is due to incorrect or missing physics in stellar evolution calculations, resulting in predicted stellar structures that are discrepant with reality. Through an inverse analysis of the asteroseismic data, it is possible to go further than fitting stellar models, and instead infer details about the actual internal structure of the star at some locations in its interior. Comparing theoretical and observed stellar structures then enables the determination of the locations where the stellar models have discrepant structure, and illuminates a path for improvements to our understanding of stellar evolution. In this invited review, we describe the methods of asteroseismic inversions, and outline the progress that is being made towards measuring the interiors of stars.Comment: 12 pages, 1 figure. Invited review, Dynamics of the Sun and Star

    A-site deficient lanthanum-calcium chromite-titanates doped with 3d transition metals: synthesis, oxygen nonstoichiometry, electrical conductivity, and catalytic activity

    No full text
    Six La0.4Ca0.5Ti0.5Cr0.4M0.1O3-delta (M=Cr, Mn, Fe, Co, Ni, Cu) and two La0.4Ca0.4Ti0.4Cr0.4M0.2O3-delta (M= Ni, Cu) single-phase compositions were prepared by conventional solid-state reactions. Oxygen nonstoichiometry, electrical conductivity, phase transformations under reduction-reoxidation at high temperatures and catalytic activity for hydrocarbons oxidation of these compositions were investigated in a wide temperature and oxygen partial pressure range. The Cu-, Ni-, Co-, and Fe-containing compositions are decomposed in reducing Ar/H2O/H-2 atmosphere with pH(2)O/pH(2)=0.3 at 1,000 degrees C, while the Cr- and Mn-containing ceramics remain stable at the same conditions. The metallic particles of the added 3d elements formed after decomposition were registered by X-ray diffraction method in case of Cu- and Ni-containing compositions. These formed composites can be completely reoxidized with formation of initial compositions by treatment in air at 1,000 degrees C. The electrical conductivity of the ceramics investigated in air and Ar/H2O/H-2 gas flow increases with rising M content. The highest catalytic activity for oxidation of CH4 and C3H6, which was comparable with the activity of the La0.4Ca0.5Ti0.5Cr0.5O3-delta + 5%NiO composite, shows the Cu-containing powders

    Splicing analysis of 14 <i>BRCA1</i> missense variants classifies nine variants as pathogenic

    Get PDF
    Pathogenic germline mutations in the BRCA1 gene predispose carriers to early onset breast and ovarian cancer. Clinical genetic screening of BRCA1 often reveals variants with uncertain clinical significance, complicating patient and family management. Therefore, functional examinations are urgently needed to classify whether these uncertain variants are pathogenic or benign. In this study, we investigated 14 BRCA1 variants by in silico splicing analysis and mini-gene splicing assay. All 14 alterations were missense variants located within the BRCT domain of BRCA1 and had previously been examined by functional analysis at the protein level. Results from a validated mini-gene splicing assay indicated that nine BRCA1 variants resulted in splicing aberrations leading to truncated transcripts and thus can be considered pathogenic (c.4987A>T/p.Met1663Leu, c.4988T>A/p.Met1663Lys, c.5072C>T/p.Thr1691Ile, c.5074G>C/p.Asp1692His, c.5074G>A/p.Asp1692Asn, c.5074G>T/p.Asp1692Tyr, c.5332G>A/p.Asp1778Asn, c.5332G>T/p.Asp1778Tyr, and c.5408G>C/p.Gly1803Ala), whereas five BRCA1 variants had no effect on splicing (c.4985T>C/p.Phe1662Ser, c.5072C>A/p.Thr1691Lys, c.5153G>C/p.Trp1718Ser, c.5154G>T/p.Trp1718Cys, and c.5333A>G/p.Asp1778Gly). Eight of the variants having an effect on splicing (c.4987A>T/p.Met1663Leu, c.4988T>A/p.Met1663Lys, c.5074G>C/p.Asp1692His, c.5074G>A/p.Asp1692Asn, c.5074G>T/p.Asp1692Tyr, c.5332G>A/p.Asp1778Asn, c.5332G>T/p.Asp1778Tyr, and c.5408G>C/p.Gly1803Ala) were previously determined to have no or an uncertain effect on the protein level, whereas one variant (c.5072C>T/p.Thr1691Ile) were shown to have a strong effect on the protein level as well. In conclusion, our study emphasizes that in silico splicing prediction and mini-gene splicing analysis are important for the classification of BRCA1 missense variants located close to exon/intron boundaries
    corecore