83 research outputs found

    Coupled phase transformations and plastic flows under torsion at high pressure in rotational diamond anvil cell: Effect of contact sliding

    Get PDF
    A three-dimensional large-sliding contact model coupled with strain-induced phase transformations (PTs) and plastic flow in a disk-like sample under torsion at high pressure in rotational diamond anvil cell (RDAC) is formulated and studied. Coulomb and plastic friction are combined and take into account variable parameters due to PT. Results are obtained for weaker, equal-strength, and stronger high pressure phases, and for three values of the kinetic coefficient in a strain-controlled kinetic equation and friction coefficient. All drawbacks typical of problem with cohesion are overcome, including eliminating mesh-dependent shear band and artificial plastic zones. Contact sliding intensifies radial plastic flow, which leads to larger reduction in sample thickness. Larger plastic strain and increased pressure in the central region lead to intensification of PT. However, the effect of the reduction in the friction coefficient on PT kinetics is nonmonotonous. Sliding increases away from the center and with growing rotation and is weakly dependent on the kinetic coefficient. Also, cyclic back and forth torsion is studied and compared to unidirectional torsion. Multiple experimental phenomena, e.g., pressure self-multiplication effect, steps (plateaus) at pressure distribution, flow to the center of a sample, and oscillatory pressure distribution for weaker high-pressure phase, are reproduced and interpreted. Reverse PT in high pressure phase that flowed to the low pressure region is revealed. Possible misinterpretation of experimental PT pressure is found. Obtained results represent essential progress toward understanding of strain-induced PTs under compression and shear in RDAC and may be used for designing experiments for synthesis of new high pressure phases and reduction in PT pressure for known phases, as well as for determination of PT kinetics from experiments

    Numerical study on the flexural behaviour of slim-floor beams with hollow core slabs at elevated temperature

    Full text link
    [EN] Slim-floor beams are a novel typology of steel beams where the steel profile is fully embedded within the concrete floor depth. While the use of this system is increasing fast in the construction practice, the available investigations on its fire performance are still scarce. This paper focuses on analysing the fire behaviour of slim floor beams combined with hollow core slabs as flooring system. Two configurations are studied, namely Integrated Floor Beam (IFB) and Shallow Floor Beam (SFB). A finite element model is developed and validated by comparison with experimental results available in the literature as well as with thermal tests carried out by the authors. Subsequently, parametric studies are conducted with the aim of providing practical design recommendations. The influence of the composite beam configuration, concrete type, longitudinal reinforcement and steel plate thickness is studied. The conclusions drawn in this paper suggest that the SFB configuration may provide a significant enhancement in terms of fire resistance compared to IFB, provided that the appropriate combination of the parameters studied is used.The authors would like to express their sincere gratitude to the Spanish "Ministerio de Economia y Competitividad" for the help provided through the Project BIA2015-67192-R and to the European Union through the FEDER funds.Albero Gabarda, V.; Espinós Capilla, A.; Serra Mercé, E.; Romero, ML.; Hospitaler Pérez, A. (2019). Numerical study on the flexural behaviour of slim-floor beams with hollow core slabs at elevated temperature. Engineering Structures. 180:561-573. https://doi.org/10.1016/j.engstruct.2018.11.061S56157318

    Temperature-dependent mechanical behaviour of PMMA: Experimental analysis and modelling

    Get PDF
    This paper was published in the journal Polymer Testing and the definitive published version is available at http://dx.doi.org/10.1016/j.polymertesting.2016.12.016.© 2016 Elsevier LtdAn experimental study of temperature-dependent mechanical behaviour of Poly-methyl methacrylate (PMMA) was performed at a range of temperatures (20 °C, 40 °C, 60 °C and 80 °C) below its glass transition point (108 °C) under uniaxial tension and three-point bending loading conditions. This study was accompanied by simulations aimed at identification of material parameters for two different constitutive material models. Experimental flow curves obtained for PMMA were used in elasto-plastic analysis, while a sim-flow optimization tool was employed for a two-layer viscoplasticity model. The temperature increase significantly affected mechanical behaviour of PMMA, with quasi-brittle fracture at room temperature and super-plastic behaviour (ε>110%) at 80 °C. The two-layer viscoplasticity material model was found to agree better with the experimental data obtained for uniaxial tension than the elasto-plastic description

    Global-Local Analysis for a Lateral-Loading Test on a Real RC Frame Structure

    No full text
    • …
    corecore