1,467 research outputs found

    Mixed integer nonlinear programming for Joint Coordination of Plug-in Electrical Vehicles Charging and Smart Grid Operations

    Full text link
    The problem of joint coordination of plug-in electric vehicles (PEVs) charging and grid power control is to minimize both PEVs charging cost and energy generation cost while meeting both residential and PEVs' power demands and suppressing the potential impact of PEVs integration. A bang-bang PEV charging strategy is adopted to exploit its simple online implementation, which requires computation of a mixed integer nonlinear programming problem (MINP) in binary variables of the PEV charging strategy and continuous variables of the grid voltages. A new solver for this MINP is proposed. Its efficiency is shown by numerical simulations.Comment: arXiv admin note: substantial text overlap with arXiv:1802.0445

    Model Predictive Control for Smart Grids with Multiple Electric-Vehicle Charging Stations

    Get PDF
    Next-generation power grids will likely enable concurrent service for residences and plug-in electric vehicles (PEVs). While the residence power demand profile is known and thus can be considered inelastic, the PEVs' power demand is only known after random PEVs' arrivals. PEV charging scheduling aims at minimizing the potential impact of the massive integration of PEVs into power grids to save service costs to customers while power control aims at minimizing the cost of power generation subject to operating constraints and meeting demand. The present paper develops a model predictive control (MPC)- based approach to address the joint PEV charging scheduling and power control to minimize both PEV charging cost and energy generation cost in meeting both residence and PEV power demands. Unlike in related works, no assumptions are made about the probability distribution of PEVs' arrivals, the known PEVs' future demand, or the unlimited charging capacity of PEVs. The proposed approach is shown to achieve a globally optimal solution. Numerical results for IEEE benchmark power grids serving Tesla Model S PEVs show the merit of this approach

    A profiling analysis of contributions of cigarette smoking, dietary calcium intakes, and physical activity to fragility fracture in the elderly

    Get PDF
    Fragility fracture and bone mineral density (BMD) are influenced by common and modifiable lifestyle factors. In this study, we sought to define the contribution of lifestyle factors to fracture risk by using a profiling approach. The study involved 1683 women and 1010 men (50+ years old, followed up for up to 20 years). The incidence of new fractures was ascertained by X-ray reports. A “lifestyle risk score” (LRS) was derived as the weighted sum of effects of dietary calcium intake, physical activity index, and cigarette smoking. Each individual had a unique LRS, with higher scores being associated with a healthier lifestyle. Baseline values of lifestyle factors were assessed. In either men or women, individuals with a fracture had a significantly lower age-adjusted LRS than those without a fracture. In men, each unit lower in LRS was associated with a 66% increase in the risk of total fracture (non-adjusted hazard ratio [HR] 1.66; 95% CI, 1.26 to 2.20) and still significant after adjusting for age, weight or BMD. However, in women, the association was uncertain (HR 1.30; 95% CI, 1.11 to 1.53). These data suggest that unhealthy lifestyle habits are associated with an increased risk of fracture in men, but not in women, and that the association is mediated by BMD

    Diffusion limit for single-server retrial queues with renewal input and outgoing calls

    Get PDF
    This paper studies a single-server retrial queue with two types of calls (incoming and outgoing calls). Incoming calls arrive at the server according to a renewal process, and outgoing calls of N − 1 (N ≥ 2) categories occur according to N − 1 independent Poisson processes. Upon arrival, if the server is occupied, an incoming call joins a virtual infinite queue called the orbit, and after an exponentially distributed time in orbit enters the server again, while outgoing calls are lost if the server is busy at the time of their arrivals. Although M/G/1 retrial queues and their variants are extensively studied in the literature, the GI/M/1 retrial queues are less studied due to their complexity. This paper aims to obtain a diffusion limit for the number of calls in orbit when the retrial rate is extremely low. Based on the diffusion limit, we built an approximation to the distribution of the number of calls in orbit

    Model Predictive Control for Smart Grids with Multiple Electric-Vehicle Charging Stations

    Get PDF
    corecore