21 research outputs found

    Corrected model for transport in static diffusion chamber

    Get PDF
    In present consideration for the static diffusion chamber the model of mass and heat transfer and its analytical solution are presented for the pseudo-open in one direction system

    A novel cement-based hybrid material

    Get PDF
    Carbon nanotubes (CNTs) and carbon nanofibers (CNFs) are known to possess exceptional tensile strength, elastic modulus and electrical and thermal conductivity. They are promising candidates for the next-generation high-performance structural and multi-functional composite materials. However, one of the largest obstacles to creating strong, electrically or thermally conductive CNT/CNF composites is the difficulty of getting a good dispersion of the carbon nanomaterials in a matrix. Typically, time-consuming steps of purification and functionalization of the carbon nanomaterial are required. We propose a new approach to grow CNTs/CNFs directly on the surface of matrix particles. As the matrix we selected cement, the most important construction material. We synthesized in a simple one-step process a novel cement hybrid material (CHM), wherein CNTs and CNFs are attached to the cement particles. The CHM has been proven to increase 2 times the compressive strength and 40 times the electrical conductivity of the hardened paste, i.e. concrete without sand.Peer reviewe

    Albumin Stabilized Fe@C Core–Shell Nanoparticles as Candidates for Magnetic Hyperthermia Therapy

    No full text
    Publisher Copyright: © 2022 by the authors.Carbon-encapsulated iron nanoparticles (Fe@C) with a mean diameter of 15 nm have been synthesized using evaporation–condensation flow–levitation method by the direct iron-carbon gas-phase reaction at high temperatures. Further, Fe@C were stabilized with bovine serum albumin (BSA) coating, and their electromagnetic properties were evaluated to test their performance in magnetic hyperthermia therapy (MHT) through a specific absorption rate (SAR). Heat generation was observed at different Fe@C concentrations (1, 2.5, and 5 mg/mL) when applied 331 kHz and 60 kA/m of an alternating magnetic field, resulting in SAR values of 437.64, 129.36, and 50.4 W/g for each concentration, respectively. Having such high SAR values at low concentrations, obtained material is ideal for use in MHT.Peer reviewe
    corecore