2,160 research outputs found

    q-Legendre Transformation: Partition Functions and Quantization of the Boltzmann Constant

    Full text link
    In this paper we construct a q-analogue of the Legendre transformation, where q is a matrix of formal variables defining the phase space braidings between the coordinates and momenta (the extensive and intensive thermodynamic observables). Our approach is based on an analogy between the semiclassical wave functions in quantum mechanics and the quasithermodynamic partition functions in statistical physics. The basic idea is to go from the q-Hamilton-Jacobi equation in mechanics to the q-Legendre transformation in thermodynamics. It is shown, that this requires a non-commutative analogue of the Planck-Boltzmann constants (hbar and k_B) to be introduced back into the classical formulae. Being applied to statistical physics, this naturally leads to an idea to go further and to replace the Boltzmann constant with an infinite collection of generators of the so-called epoch\'e (bracketing) algebra. The latter is an infinite dimensional noncommutative algebra recently introduced in our previous work, which can be perceived as an infinite sequence of "deformations of deformations" of the Weyl algebra. The generators mentioned are naturally indexed by planar binary leaf-labelled trees in such a way, that the trees with a single leaf correspond to the observables of the limiting thermodynamic system

    Nonlinear dynamics of soft fermion excitations in hot QCD plasma III: Soft-quark bremsstrahlung and energy losses

    Full text link
    In general line with our early works [Yu.A. Markov, M.A. Markova, Nucl. Phys. A770 (2006) 162; 784 (2007) 443] within the framework of a semiclassical approximation the general theory of calculation of effective currents and sources generating bremsstrahlung of an arbitrary number of soft quarks and soft gluons at collision of a high-energy color-charged particle with thermal partons in a hot quark-gluon plasma, is developed. For the case of one- and two-scattering thermal partons with radiation of one or two soft excitations, the effective currents and sources are calculated in an explicit form. In the model case of `frozen' medium, approximate expressions for energy losses induced by the most simple processes of bremsstrahlung of soft quark and soft gluon, are derived. On the basis of a conception of the mutual cancellation of singularities in the sum of so-called `diagonal' and `off-diagonal' contributions to the energy losses, an effective method of determining color factors in scattering probabilities, containing the initial values of Grassmann color charges, is suggested. The dynamical equations for Grassmann color charges of hard particle used by us early are proved to be insufficient for investigation of the higher radiative processes. It is shown that for correct description of these processes the given equations should be supplemented successively with the higher-order terms in powers of the soft fermionic field.Comment: 93 pages, 20 figure

    Towards optimization of quantum circuits

    Get PDF
    Any unitary operation in quantum information processing can be implemented via a sequence of simpler steps - quantum gates. However, actual implementation of a quantum gate is always imperfect and takes a finite time. Therefore, seeking for a short sequence of gates - efficient quantum circuit for a given operation, is an important task. We contribute to this issue by proposing optimization of the well-known universal procedure proposed by Barenco et.al [1]. We also created a computer program which realizes both Barenco's decomposition and the proposed optimization. Furthermore, our optimization can be applied to any quantum circuit containing generalized Toffoli gates, including basic quantum gate circuits.Comment: 10 pages, 11 figures, minor changes+typo

    Quasithermodynamics and a Correction to the Stefan--Boltzmann Law

    Full text link
    We provide a correction to the Stefan--Boltzmann law and discuss the problem of a phase transition from the superfluid state into the normal state.Comment: Latex, 9page

    Peculiarities of dynamics of Dirac fermions associated with zero-mass lines

    Get PDF
    Zero-mass lines result in appearance of linear dispersion modes for Dirac fermions. These modes play an important role in various physical systems. However, a Dirac fermion may not precisely follow a single zero-mass line, due to either tunneling between different lines or centrifugal forces. Being shifted from a zero-mass line the Dirac fermion acquires mass which can substantially influence its expected "massless" behavior. In the paper we calculate the energy gap caused by the tunneling between two zero-mass lines and show that its opening leads to the delocalization of linear dispersion modes. The adiabatic bending of a zero-mass line gives rise to geometric phases. These are the Berry phase, locally associated with a curvature, and a new phase resulting from the mass square asymmetry in the vicinity of a zero-mass line.Comment: 6 pages, 4 figures. In the second version some references were added and minor changes were made in the introductio

    Conductance of a Mott Quantum Wire

    Full text link
    We consider transport through a one-dimensional conductor subject to an external periodic potential and connected to non-interacting leads (a "Mott quantum wire"). For the case of a strong periodic potential, the conductance is shown to jump from zero, for the chemical potential lying within the Mott-Hubbard gap, to the non-interacting value of 2e^2/h, as soon as the chemical potential crosses the gap edge. This behavior is strikingly different from that of an optical conductivity, which varies continuously with the carrier concentration. For the case of a weak potential, the perturbative correction to the conductance due to Umklapp scattering is absent away from half-filling.Comment: 4 pages, RevTex, 1 ps figure included; published versio
    corecore