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Peculiarities of dynamics of Dirac fermions associated with zero-mass lines

Timur Tudorovskiy and Mikhail I. Katsnelson
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Radboud University of Nijmegen,
Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands

(Dated: June 14, 2012)

Zero-mass lines result in appearance of linear dispersion modes for Dirac fermions. These modes
play an important role in various physical systems. However, a Dirac fermion may not precisely
follow a single zero-mass line, due to either tunneling between different lines or centrifugal forces.
Being shifted from a zero-mass line the Dirac fermion acquires mass which can substantially influence
its expected “massless” behavior. In the paper we calculate the energy gap caused by the tunneling
between two zero-mass lines and show that its opening leads to the delocalization of linear dispersion
modes. The adiabatic bending of a zero-mass line gives rise to geometric phases. These are the
Berry phase, locally associated with a curvature, and a new phase resulting from the mass square
asymmetry in the vicinity of a zero-mass line.

I. INTRODUCTION

Zero energy states are well known for the one-
dimensional eigenvalue-problem for the Dirac particle
with a spatially dependent mass. Such a problem natu-
rally arises in various contexts, both in condensed matter
and in high-energy physics1. These are super-symmetric
quantum mechanics2, fractional charge3 and solitons in
polyacetylene4. For the monotonous mass distribution
the wavefunction corresponding to the zero energy state
is localized in the vicinity of the point were the mass
vanishes.

Let us consider the two-dimensional case. Assuming
that the mass depends on a single variable only, say y,
we come back to the one-dimensional problem. How-
ever, in two dimensions the motion is allowed not only
along the y-axis, but also along the perpendicular to it
x-axis. If the mass vanishes at the point y0, the line
(x, y0) is the zero-mass line (ZML). Our two-dimensional
problem reduces to the one-dimensional problem com-
pletely if we assume that the particle does not move along
ZML. For non-zero values of the momentum px along
ZML the energy of the particle is given by the linear re-
lation, E = ±px, i.e. the one-dimensional zero-energy
state becomes a linear dispersion mode (LDM) in two
dimensions.

LDMs naturally appear as edge states for inverted
band semiconductors5 as well as for a certain model of
the quantum Hall effect6. Though single-particle LDMs
in quantum Hall regime might not be a sufficient de-
scription for conventional two-dimensional electron gas7,
this description seems to be adequate for the case of
narrow graphene ribbons8. Another recent examples
where ZML are essentially involved are given by topolog-
ically protected edge states in CdTe/HgTe/CdTe topo-
logical insulators9–13, graphene on boron nitride14,15,
and chemically functionalized graphene16–18 where for
an inhomogeneous functionalization the mass term can
in general change its sign. LDMs arise in gapped bi-
layer graphene19–21 and chiral p-wave superconductors22.
Changing a width of CdTe/HgTe/CdTe quantum well or

applying a gate voltage one can also create ZML in bulk.
Though our consideration will be formally applicable in
all these cases, for the sake of definiteness we assume
in this paper that LDMs relate to edge states in two-
dimensional topological insulators.

An effective dynamics of charge carriers in topological
insulators10,11,13 is governed by the Dirac Hamiltonian
with a spatially dependent mass term. This term van-
ishes along ZML giving rise to LDM. This mode lies in
a gap for bulk states. Along a single straight ZML the
linear dispersion mode propagates only in one direction.
This unidirectional edge mode is very similar to unidirec-
tional edge states in conventional semiconductors placed
in the high magnetic field. It is well known, that these
states support the quantum Hall current23. The exis-
tence of unidirectional channels in topological insulators
in zero magnetic field is referred to, by analogy with the
quantum Hall effect, as quantum spin Hall effect9,24,25.

From the physical point of view a mass square land-
scape in a topological insulator forms a waveguide around
ZML (see Fig. 1). LDM in such a waveguide corresponds
to zero transversal momentum, i.e. to the rest in the di-
rection transversal to ZML. This stands in stark contrast
to the conventional Schrödinger particle in a soft-walls
waveguide, where the lowest transversal energy is posi-
tive.

LDMs in topological insulators are known to be topo-
logically protected against scattering by non-magnetic
impurities13. Topological protection results from the
spatial separation of states traveling in different direc-
tions, thus the backscattering should be attenuated by
the probability to tunnel through the bulk of a sample.
This peculiarity is very similar to the behavior of con-
ducting states in quantum Hall effect. In ideal system at
zero temperature it is the tunneling between edge states
which determines an accuracy of quantum Hall plateaus.

The assumption about the spatial separation of states
traveling in different directions does not take into ac-
count peculiarities of quantum tunneling. Indeed, let us
consider a ribbon with two parallel ZML at its opposite
edges and assume that mass does not depend on the vari-
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FIG. 1: Particles corresponding LDM on the mass square
surface. Red and green spheres illustrate edge states with
large longitudinal momenta. They are localized at a single
zero-mass line. Blue spheres illustrate states with small lon-
gitudinal momenta. Such states are localized at both ZMLs
simultaneously.

able along the line. One can expect that the crossing of
straight lines corresponding to a linear dispersion turns
into the avoided crossing. Obviously, this effect does not
depend on the symmetry: a transition from a crossing to
an avoided crossing caused by tunneling is generic.

Due to the gap opening the LDM cone turns into two
branches, almost linear at large momenta. Let us con-
sider an upper branch. For large negative momenta the
wavefunction is localized at one edge of the sample and
for large positive momenta it is localized at the other
edge. Since the wavefunction smoothly depends on the
longitudinal momentum, we should conclude that at a
certain longitudinal momentum amplitudes of the wave-
function are comparable at both ZMLs. At this point
states traveling in different directions are not spatially
separated and the topological protection may break (see
Fig. 1). In Section III we illustrate this effect by an ex-
ample of a symmetric mass distribution.

The tunneling between ZMLs has been studied
experimentally26. In this work the differential con-
ductance measurements in the integer quantum Hall
regime between two parallel edge channels were reported.
Theoretically27 one considered the tunneling between
Quantum Hall edge states via the Landau-Zener-like
mechanism: it was assumed that the main contribution
comes from the vicinity of a point were edge channels are
the most close to each other.

Topological protection of a single ZML should lead to
a substantial change of dynamical properties of LDM.
Indeed, let us consider an adiabatically bent ZML. For
a conventional Schrödinger particle the bending implies
a geometric potential, proportional to the square of the
curvature at every point28,29. This barrier results in the
appearance of a trapped mode and backscattering. Both
effects are forbidden for LDM due to the topological pro-
tection. In the Section IV we show that the bending of
ZML, indeed, tends only to the emergence of geometric
phases.

II. LINEAR DISPERSION MODES AND
ZERO-MASS LINES

We assume that the dynamics of charge carriers is gov-
erned by the Hamiltonian

Ĥ = σxp̂x + σyp̂y + σzm(y), (1)

where the mass m(y) vanishes along the line y = 0. Here
we put ~ = v = 1, where v is the Fermi velocity. For a
given energy E the wavefunction Ψ obeys the equation
ĤΨ = EΨ. We write Ψ = eipxxχ(y),

[σxpx + σyp̂y + σzm(y)]χ(y) = Eχ(y). (2)

In a matrix form (2) reads(
m− E px − ∂y
px + ∂y −m− E

)(
χ1

χ2

)
= 0. (3)

Let us now sum up equations in (3) and subtract the first
one from the second. Then we find(

px − E ∂y +m
∂y −m px + E

)(
η1
η2

)
= 0, (4)

where we introduced the notations η1 = (χ1 + χ2)/
√

2,

η2 = (χ1−χ2)/
√

2 (see Appendix A for details). We can
reduce (4) to scalar Schrödinger equations5

[−∂2y +m(y)2 +m′(y)]η1 = λη1, (5)

[−∂2y +m(y)2 −m′(y)]η2 = λη2, (6)

where E2 = p2x + λ. Functions η1 and η2 are not inde-
pendent. Connection formulas read

(E + px)η2 = (m− ∂y)η1, (7)

(E − px)η1 = (m+ ∂y)η2.

Equations (5)-(6) can be written in the form

(m+ ∂y)(m− ∂y)η1 = λη1, (8)

(m− ∂y)(m+ ∂y)η2 = λη2.

Multiplying the first equation in (8) by η1, the second by
η2 and integrating over y we find

λ‖η1‖2 = ‖(m− ∂y)η1‖2 ≥ 0, (9)

λ‖η2‖2 = ‖(m+ ∂y)η2‖2 ≥ 0,

whence λ ≥ 0, since η1 and η2 can not vanish simultane-
ously. In (9) we denoted

‖ηi‖2 =

∫ ∞
−∞

η2i (y)dy. (10)

Let us consider a case when m monotonously depends
on y, say m′(y) > 0. Then equations (4) comprise a
LDM, for which E = −px. It is clear that η1 should be
identically zero, since (5) can not have a zero eigenvalue
if the potential is always positive. From (4) for η1 = 0
we have E = −px and

η2(y) = exp

(
−
∫ y

0

dy′m(y′)

)
. (11)
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FIG. 2: Tilted double well potentials. Solid and dashed lines
correspond to v1, v2 respectively. An existence of the up-
turned well can lead to the Arago effect: focusing in a shadow
region

III. TWO ZERO-MASS LINES

Let us consider a mass distribution

m(y) = y2 − a2. (12)

It mimics a sample with two parallel ZMLs at y = ±a.
The infinitely large values m(y) in the limit y → ±∞
can be treated as two edges of the sample. Effective
potentials

v1(y) = m(y)2 +m′(y) = (y2 − a2)2 + 2y, (13)

v2(y) = m(y)2 −m′(y) = (y2 − a2)2 − 2y, (14)

entering equations (5), (6), in this case correspond to
tilted double wells (see Fig. 2).

It is easy to see that λ = 0 does not belong to the spec-
trum of Eq. (6). Indeed, the exact solution (11) exponen-
tially decays when y →∞ and exponentially grows when
y → −∞. Due to the conservation of Wronskian another
linear independent solution of (6) exponentially grows
when y → ∞ and exponentially decays when y → −∞.
Similarly we prove that λ = 0 does not belong to the
spectrum of Eq. (5).

Nonzero λ leads to avoided crossing of branches E =
±px, corresponding to well separated ZMLs (see Fig. 3).

The dispersion relation reads E±n (px) = ±
√
p2x + λn.

The splitting between branches E±0 (px) is equal to 2
√
λ0,

where λ0 is the lowest eigenvalue of the Schrödinger equa-
tions (5), (6). We put px = 0 and take the branch corre-
sponding to E0(0) = py =

√
λ0. Equations (7) give

(m+ ∂y)η̃2(y) = py η̃1(y), (15)

(m− ∂y)η̃1(y) = py η̃2(y),

where η̃1(y), η̃2(y) correspond to px = 0. If η̃1(y), η̃2(y)
are known then the functions η1(y), η2(y) for px 6= 0 can
be reconstructed as

η1(y) = (E + px)η̃1(y), η2(y) = py η̃2(y). (16)

px

E
Hp

xL

FIG. 3: The schematic view of the dispersion relation and
the corresponding wavefunction reconstruction (insets). One
sees that at zero longitudinal momenta the wavefunction is
not localized at a single ZML.

Let us multiply the first equation in (15) by η̃1(y), the
second one by η̃2(y) and subtract the second result from
the first one. We obtain ∂y[η̃1(y)η̃2(y)] = py[η̃21(y) −
η̃22(y)]. Integrating the last equality over y from minus to
plus infinity we find ‖η̃1‖2 = ‖η̃2‖2, which suggests that

χ1,2(y) = [η̃1(y)±η̃1(y)]/
√

2 are not localized at a certain
ZML at zero longitudinal momentum px, but rather have
comparable amplitudes at both ZMLs. In contrast to the
double well problem (see30, p. 183) this effect is not a
consequence of a spatial symmetry. The delocalization at
zero longitudinal momentum may destroy the topological
protection against disorder.

Let us now look how the localization appears at non-
zero longitudinal momenta. For |px| � py we find E +
px � py if px > 0 and E + px � py if px < 0. Thus for
large positive longitudinal momenta χ1,2 are localized at
one ZML and for large negative longitudinal momenta
these functions are localized at another ZML.

For symmetric mass distribution (12) we can obtain
an analytic estimation for the spitting. Let us change y
to −y in (15). Taking into account that m(y) is an even
function we find

(m− ∂y)η̃2(−y) = py η̃1(−y),

(m+ ∂y)η̃1(−y) = py η̃2(−y).

Thus we conclude η̃1(−y) = η̃2(y). Let us multiply the
first equation in (15) by η̃1(y) and integrate over y. We
obtain

py‖η̃1‖2 =

∫ ∞
−∞

dy η̃2(−y)(m+ ∂y)η̃2(y) =

= 2

∫ ∞
0

dy η̃2(−y)(m+ ∂y)η̃2(y) + η̃22(0)

= 2py

∫ ∞
0

dy η̃21(y) + η̃22(0), (17)

Since the function η̃1 obeys the Schrödinger equation (5)
with potential (13) for small py it remains exponentially
small for any y > 0 except the vicinity of the point y = a.
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In this vicinity η̃1 grows due to the focusing in a shadow
region (an effect similar to the Arago spot, Fig.2), but
nevertheless remains small. Therefore we can neglect an
integral in the last equality in (17) and write

py‖η̃2‖2 ' η̃22(0), (18)

where (11) was used to approximate η̃2 in the region y >
0. Using (11) again we find

py

∫ ∞
0

dy exp

(
−2

∫ y

0

dy′m(y′)

)
= 1. (19)

The integral in (19) can be computed using the Laplace
method. It gives

py

√
π

a
exp

(
−2

∫ a

0

dy′m(y′)

)
= 1, (20)

whence

py =

√
a

π
exp

(
2

∫ a

0

dy′m(y′)

)
=

√
a

π
exp

(
−4a3/3

)
.

(21)
Thus for the splitting we obtain

2|py| = 2

√
a

π
exp

(
−4a3/3

)
. (22)

Though the explicit estimation (22) of the splitting
holds only for the specific symmetric mass distribution
(12), one can expect that for a generic case the splitting
in LDM for a system with two ZMLs is proportional to

exp

(
−
∫ a2

a1

|m(y)|dy
)
, (23)

where a1 < a2 are positions of ZMLs. In contrast to the
famous double-well problem, the ground state λ > 0 of
(5), (6) is still determined by the tunneling, since for any
m(y), every well treated apart generates a zero eigenen-
ergy. For the double well the semiclassical degeneracy
persists in the symmetric situation only.

IV. BENT ZERO-MASS LINE

Let us consider a bent ZML given by {x, y} = R(τ),
where τ is a natural parameter, i.e. |R′(τ)| = 1. In the
vicinity of this line we introduce new variables τ , ξ by
the equality {x, y} = R(τ) + ξn(τ), where n is a unit
normal vector on the curve at the point τ . In curvilinear
coordinates (1) reads

H = − iσR′(τ)

1− ξk(τ)

∂

∂τ
− iσn(τ)

∂

∂ξ
+ σzm, (24)

where k(τ) = −〈R′,n′〉 is the curvature at the point τ
and σb = σxbx + σyby for a vector b = {bx, by}. Since
the Jacobian

J =
D(x, y)

D(τ, ξ)
= 1− k(τ)ξ (25)

is not unity, we introduce a new wavefunction

Ψ̃ =
√

1− k(τ)ξΨ, (26)

which in curvilinear coordinates has a “conventional”
normalization condition:∫

V

dτdξ(Ψ̃†Ψ̃) = 1. (27)

Then the stationary Dirac equation reads ĤΨ̃ = EΨ̃,

Ĥ =
σR′(τ)

1− ξk(τ)
p̂τ − iσn(τ)

∂

∂ξ
+ σzm

− ikσn(τ)

2(1− ξk(τ))
− iσR′(τ)ξk′(τ)

2(1− ξk(τ))2
.

In the case |m′τ | � |m′ξ| we find Ĥ ' Ĥ0 + Ĥ1,

Ĥ0 = σR′(τ)p̂τ − iσn(τ)
∂

∂ξ
+ σzm, (28)

Ĥ1 = σR′(τ)ξk(τ)p̂τ −
ik

2
σn(τ). (29)

In the adiabatic approximation the effective dynamics
is one-dimensional along ZML. It is governed by the ef-
fective scalar Hamiltonian L̂ ' L̂0 + L̂1. The symbol31

L0(pτ , τ) of L̂0 is an eigenvalue of the problem32(
σR′(τ)pτ − iσn(τ)

∂

∂ξ
+ σzm

)
χ(pτ , τ)

= L0(pτ , τ)χ(pτ , τ). (30)

Using the notations n = {n1, n2}, R′ = {n2,−n1} we
obtain (

m− L0 pτ − ∂ξ
pτ + ∂ξ −m− L0

)(
χ̃1

χ2

)
= 0, (31)

where χ̃1 = (n2 − in1)χ1. After to the replacement τ →
x, ξ → y (31) coincides with (4). From the expression32

L1 = 〈χ†H1χ〉ξ + i

〈
χ†
∂L0

∂τ

∂χ

∂pτ

〉
ξ

− i
〈
χ†
∂H0

∂pτ

∂χ

∂τ

〉
ξ

(32)
we find

L1 = − i
2

∂2L0

∂pτ∂τ
+ 〈χ̃1ξχ2〉ξk(τ)pτ −

kpτ
2L0

. (33)

Here 〈·〉ξ means the integration over ξ. To pass from
(32) to (33) we have chosen χ̃ = {χ̃1, χ2} to be a real
function and used the following equalities: χ†(σn)χ =
0, 〈χ†χ′pτ 〉ξ = 0, χ†(σR′)χ = 2χ̃1χ2, χ†(σR′)∂τχ =
(∂τ − ik) χ̃1χ2, 〈χ̃1χ2〉ξ = pτ/2L0, (L0)′pτ = pτ/L0.

The solution ψ of the effective longitudinal equation
L̂ψ = Eψ reads31

ψ(τ) =

√∣∣∣∣L0

pτ

∣∣∣∣eiθ, (34)

θ =

∫
pτdτ −

∫ (
L0〈χ̃1ξχ2〉ξ −

1

2

)
k(τ)dτ. (35)
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FIG. 4: Illustration of the closed ZML. Solid arrows show
the tangent vectors, dashed arrows correspond to x-axis.

It relates to the solution of the Dirac equation as Ψ̃ =
χψ. From the definition of curvature we have k(τ)dτ =
−〈R′, dn〉. Introducing the angle φ between R′ and x-
axis we find from the last equality k(τ)dτ = dφ. This
gives

θ =

∫
pτdτ −

∫
L0〈χ̃1ξχ2〉ξk(τ)dτ +

∆φ

2
, (36)

where ∆φ is the total rotation of the tangent vector.
From (34) it is easy to find the quantization rule. For a

closed ZML without turning points (see Fig. 4) we obtain

1

2π

∮
pτdτ −

E

2π

∮
〈χ̃1ξχ2〉ξk(τ)dτ = n− w

2
, (37)

where pτ = ±
√
E2 − λ(τ), λ(τ) = L2

0(pτ = 0, τ) and w
is the winding number indicating how many times the
tangent vector turns around a fixed point. For a curve
without intersections w = 1.

For LDM L0 = E = −pτ provided that m′ξ > 0 and

(33) gives

L1 = 〈χ̃1ξχ2〉ξk(τ)pτ +
k

2
. (38)

The first term in (38) describes the energy gain due to
the displacement of the Dirac fermion from ZML caused
by the confinement asymmetry. This energy gain is the
consequence of the centrifugal force. One sees that in
the considered approximation the centrifugal force itself
does not shift the particle since its energy is assumed to
be relatively small. For a higher energy one can use the
approach developed in33.

The term k/2 in (38) is a geometric potential associ-
ated with a curvature. It is well-known28,29 that for a
Schrödinger particle in a bent waveguide the geometric
potential is negative and proportional to k2. It always
leads to the formation of curvature induced bound states.
On the contrary, for LDM the geometric potential results
in the appearance of a geometric phase only. Indeed, the
effective longitudinal wavefunction ψ (34) reads

ψ(τ) = eiθ,

θ = −Eτ − E
∫
〈χ̃1ξχ2〉ξk(τ)dτ +

∆φ

2
. (39)

The absence of trapped states for the Dirac fermion can
be seen as a manifistation of the Klein tunneling34,35 for
the massless LDM. A similar effect was already found
in36 for a mode with a liner dispersion in a bent graphene
ribbon.

For the LDM quantization condition (37) can be sim-
plified to give

− El

2π
− E

2π

∮
〈χ̃1ξχ2〉ξk(τ)dτ = n− w

2
. (40)

Here l is the length of the closed ZML. From (40) we
obtain the semiclassical spectral series En:

En = −2π

l

(
n− w

2

)
+

2πn

l2

∮
〈χ̃1ξχ2〉ξk(τ)dτ. (41)

Half-integer numbers in the first term of (41) can be seen
as a manifestation of the Berry phase for the massless
Dirac fermion. Indeed, along ZML a particle described
by LDM remains massless, therefore the conventional ar-
gument that such a particle acquires the Berry phase
equal to πw can be repeated.

Using the results of Section II for a single ZML we
find χ1 = −χ2 = η2/

√
2, where η2 differs from (11) by a

normalization factor

N(τ) =

[∫ ∞
−∞

exp

(
−2

∫ ξ

0

dξ′m(τ, ξ′)

)
dξ

]−1/2
. (42)

This gives

〈χ̃1ξχ2〉ξ = −N
2(τ)

2

∫ ∞
−∞

ξ exp

(
−2

∫ ξ

0

dξ′m(τ, ξ′)

)
dξ.

(43)
More precisely, the integration in (42), (43) should be
performed between finite limits lying in a sufficiently
large vicinity of ZML which, on the other side, does not
contain any other ZML. We completely neglected tunnel-
ing effects, thus the constructed LDM should be consid-
ered as an asymptotic of the eigenfunction of the Dirac
equation in the given vicinity of ZML. The non-zero value
of (43) means that the Dirac particle is slightly shifted
from ZML due to the local asymmetry of the confine-
ment. Indeed, if m is an odd function of ξ the expression
(43) vanishes. This happens since the confining potential
m2(τ, ξ) in this case is symmetric with respect to ZML.

V. CONCLUSION

In the paper we studied the LDM dynamics of charge
carriers in topological insulators. We have shown that
the wavefunction of a charge carrier is localized along a
single ZML only at large longitudinal momenta. At small
longitudinal momenta the wavefunction has comparable
amplitudes at both edges of the sample, which may affect
the topological protection. We found that the curvature
of a bent ZML forms a geometric potential, which how-
ever does not lead to an appearance of trapped modes
due to the Klein tunneling.
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Appendix A: On the effective Schrödinger equation

In this abstract we would like to clarify the origin of
the transformation performed to pass from (3) to (4).
Let us write equation (2) in the form σπ̂χ(y) = Eχ(y),
where π̂ = {px, p̂y,m(y)}. We can square this equation

using the equality

(σπ̂)2 = π̂2+iσx[πy, πz]+iσy[πz, πx]+iσz[πx, πy] (A1)

valid for any non-commuting operators π̂x, π̂y and π̂z.
We find

[p2x + p̂2y +m(y)2 + σxm
′(y)]χ = E2χ. (A2)

The last equation comprises the only matrix σx, which
does not depend on y. We write

χ =
1√
2

(
1
1

)
η1 +

1√
2

(
1
−1

)
η2 (A3)

and obtain (5), (6).
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34 M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nature
Phys. 2, 620 (2006).

35 T. Tudorovskiy, K. J. A. Reijnders, and M. I. Katsnelson,
Phys. Scr. T 146, 014010 (2012).

36 T. Tudorovskiy and A. V. Chaplik, Pis’ma Zh. Eksp. Teor.
Fiz. 84, 619 (2006).


	I Introduction
	II Linear dispersion modes and zero-mass lines
	III Two zero-mass lines
	IV Bent zero-mass line
	V Conclusion
	 Acknowledgments
	A On the effective Schrödinger equation
	 References

