44,942 research outputs found

    The phase transition in the anisotropic Heisenberg model with long range dipolar interactions

    Get PDF
    In this work we have used extensive Monte Carlo calculations to study the planar to paramagnetic phase transition in the two-dimensional anisotropic Heisenberg model with dipolar interactions (AHd) considering the true long-range character of the dipolar interactions by means of the Ewald summation. Our results are consistent with an order-disorder phase transition with unusual critical exponents in agreement with our previous results for the Planar Rotator model with dipolar interactions. Nevertheless, our results disagrees with the Renormalization Group results of Maier and Schwabl [PRB, 70, 134430 (2004)] and the results of Rapini et. al. [PRB, 75, 014425 (2007)], where the AHd was studied using a cut-off in the evaluation of the dipolar interactions. We argue that besides the long-range character of dipolar interactions their anisotropic character may have a deeper effect in the system than previously believed. Besides, our results shows that the use of a cut-off radius in the evaluation of dipolar interactions must be avoided when analyzing the critical behavior of magnetic systems, since it may lead to erroneous results.Comment: Accepted for publication in the Journal of Magnetism and Magnetic Materials. arXiv admin note: substantial text overlap with arXiv:1109.184

    Scalar fields in the Lense-Thirring background with a cosmic string and Hawking radiation

    Full text link
    We analyze the influence of the gravitational field produced by a slowly rotating black hole with a cosmic string along the axis of symmetry on a massive scalar field. Exact solutions of both angular and radial parts of the Klein-Gordon equation in this spacetime are obtained, and are given in terms of the confluent Heun functions. We emphasize the role of the presence of the cosmic string in these solutions. We also investigate the solutions in regions near and far from the event horizon. From the radial solution, we obtain the exact wave solutions near the exterior horizon of the black hole, and discuss the Hawking radiation of massive scalar particles.Comment: 6 page

    The synthesis of the light Mo and Ru isotopes: how now, no need for an exotic solution ?

    Get PDF
    The most detailed calculations of the p-process call for its development in the O/Ne layers of Type II supernovae. In spite of their overall success in reproducing the solar system content of p-nuclides, they suggest a significant underproduction of the light Mo and Ru isotopes. On grounds of a model for the explosion of a 25 solar mass star with solar metallicity, we demonstrate that this failure might just be related to the uncertainties left in the rate of the 22Ne(alpha,n)25Mg neutron producing reaction. The latter indeed have a direct impact on the distribution of the s-process seeds for the p-process.Comment: 4 pages, 4 figures. LaTex2e with aa.cls. A&A Letters, in pres

    Ward Identities and chiral anomalies for coupled fermionic chains

    Full text link
    Coupled fermionic chains are usually described by an effective model written in terms of bonding and anti-bonding spinless fields with linear dispersion in the vicinities of the respective Fermi points. We derive for the first time exact Ward Identities (WI) for this model, proving the existence of chiral anomalies which verify the Adler-Bardeen non-renormalization property. Such WI are expected to play a crucial role in the understanding of the thermodynamic properties of the system. Our results are non-perturbative and are obtained analyzing Grassmann functional integrals by means of Constructive Quantum Field Theory methods.Comment: TeX file, 26 pages, 7 figures. Published version, new section added to answer referee remarks and derive the Ward Identites, no modifications in the main resul
    • …
    corecore