7 research outputs found
A silicon nanocrystal/polymer nanocomposite as a down-conversion layer in organic and hybrid solar cells
Silicon nanocrystal (Si-nc) down-conversion is demonstrated to enhance organic and hybrid organic/inorganic bulk heterojunction solar cells based on PTB7:[70]PCBM bulk heterojunction devices. Surfactant free surface-engineered Si-ncs can be integrated into the device architecture to be optically active and provide a means of effective down-conversion of blue photons (high energy photons below ∼450 nm) into red photons (above ∼680 nm) leading to 24% enhancement of the photocurrent under concentrated sunlight. We also demonstrate that the down-conversion effect under 1-sun is enhanced in the case of hybrid solar cells where engineered Si-ncs are also included in the active layer
Photoelectric Properties of Silicon Nanocrystals/P3HT Bulk-Heterojunction Ordered in Titanium Dioxide Nanotube Arrays
A silicon nanocrystals (Si-ncs) conjugated-polymer-based bulk-heterojunction represents a promising approach for low-cost hybrid solar cells. In this contribution, the bulk-heterojunction is based on Si-ncs prepared by electrochemical etching and poly(3-hexylthiophene) (P3HT) polymer. Photoelectric properties in parallel and vertical device-like configuration were investigated. Electronic interaction between the polymer and surfactant-free Si-ncs is achieved. Temperature-dependent photoluminescence and transport properties were studied and the ratio between the photo- and dark-conductivity of 1.7 was achieved at ambient conditions. Furthermore the porous titanium dioxide (TiO2) nanotubes’ template was used for vertical order of photosensitive Si-ncs/P3HT-based blend. The anodization of titanium foil in ethylene glycol-based electrolyte containing fluoride ions and subsequent thermal annealing were used to prepare anatase TiO2nanotube arrays. The arrays with nanotube inner diameter of 90 and 50 nm were used for vertical ordering of the Si-ncs/P3HT bulk-heterojunction