15 research outputs found

    Ion source and LEBT of KAHVELab proton beamline

    Full text link
    The KAHVE Laboratory, at Bo\u{g}azi\c{c}i University, Istanbul, Turkey is home to an educational proton linac project. The proton beam will originate from a 20 keV H+ source and will be delivered to a two module Radio Frequency Quadrupole (RFQ) operating at 800 MHz via a low energy beam transport (LEBT) line. Currently, the design phase being over, commissioning and stability tests are ongoing for the proton beamline which is already produced and installed except the RFQ which is being manufactured. This work summarizes the design, production and test phases of the ion source and LEBT line components

    TMS-induced inhibition of the left premotor cortex modulates illusory social perception

    Get PDF
    Communicative actions from one person are used to predict another person’s response. However, in some cases, these predictions can outweigh the processing of sensory information and lead to illusory social perception such as seeing two people interact, although only one is present (i.e., seeing a Bayesian ghost). We applied either inhibitory brain stimulation over the left premotor cortex (i.e., real TMS) or sham TMS. Then, participants indicated the presence or absence of a masked agent that followed a communicative or individual gesture of another agent. As expected, participants had more false alarms in the communicative (i.e., Bayesian ghosts) than individual condition in the sham TMS session and this difference between conditions vanished after real TMS. In contrast to our hypothesis, the number of false alarms increased (rather than decreased) after real TMS. These pre-registered findings confirm the significance of the premotor cortex for social action predictions and illusory social perception

    Search for Dark Matter Axions with CAST-CAPP

    Full text link
    The CAST-CAPP axion haloscope, operating at CERN inside the CAST dipole magnet, has searched for axions in the 19.74 μ\mueV to 22.47 μ\mueV mass range. The detection concept follows the Sikivie haloscope principle, where Dark Matter axions convert into photons within a resonator immersed in a magnetic field. The CAST-CAPP resonator is an array of four individual rectangular cavities inserted in a strong dipole magnet, phase-matched to maximize the detection sensitivity. Here we report on the data acquired for 4124 h from 2019 to 2021. Each cavity is equipped with a fast frequency tuning mechanism of 10 MHz/min between 4.774 GHz and 5.434 GHz. In the present work, we exclude axion-photon couplings for virialized galactic axions down to gaγγ=8×1014g_{a{\gamma}{\gamma}} = 8 \times {10^{-14}} GeV1GeV^{-1} at the 90% confidence level. The here implemented phase-matching technique also allows for future large-scale upgrades.Comment: 24 pages, 5 figures, Published version available with Open Access at https://www.nature.com/articles/s41467-022-33913-

    A persistent ultraviolet outflow from an accreting neutron star binary transient

    Get PDF
    All disc-accreting astrophysical objects produce powerful outflows. In binaries containing neutron stars (NS) or black holes, accretion often takes place during violent outbursts. The main disc wind signatures during these eruptions are blue-shifted X-ray absorption lines, which are preferentially seen in disc-dominated "soft states". By contrast,optical wind-formed lines have recently been detected in "hard states", when a hot corona dominates the luminosity. The relationship between these signatures is unknown, and no erupting system has revealed wind-formed lines between the X-ray and optical bands yet, despite the many strong resonance transitions in this ultraviolet (UV) region. Here, we show that the transient NS binary Swift J1858.6-0814 exhibits wind-formed, blue-shifted absorption associated with C IV, N V and He II in time-resolved UV spectroscopy during a luminous hard state. This represents the first evidence for a warm, moderately ionized outflow component in this state. Simultaneously observed optical lines also display transient blue-shifted absorption. Decomposing the UV data into constant and variable components, the blue-shifted absorption is associated with the former. This implies that the outflow is not connect to the luminous flares in the data. The joint presence of UV and optical wind features reveals a multi-phase and/or stratified outflow from the outer disc. This type of persistent mass loss across all accretion states has been predicted by radiation-hydrodynamic simulations and helps to explain the shorter-than-expected outbursts duration

    The changing-look optical wind of the flaring X-ray transient swift J1858.6-0814

    Get PDF
    We present the discovery of an optical accretion disk wind in the X-ray transient Swift J1858.6-0814. Our 90-spectrum data set, taken with the 10.4 m Gran Telescopio Canarias telescope over eight different epochs and across five months, reveals the presence of conspicuous P-Cyg profiles in He i at 5876 Å and Hα. These features are detected throughout the entire campaign, albeit their intensity and main observational properties are observed to vary on timescales as short as 5 minutes. In particular, we observe significant variations in the wind velocity, between a few hundreds and ∼2400 km s -1. In agreement with previous reports, our observations are characterized by the presence of frequent flares, although the relation between the continuum flux variability and the presence/absence of wind features is not evident. The reported high activity of the system at radio waves indicates that the optical wind of Swift J1858.6-0814 is contemporaneous with the radio jet, as is the case for the handful of X-ray binary transients that have shown so far optical P-Cyg profiles. Finally, we compare our results with those of other sources showing optical accretion disk winds, with emphasis on V404 Cyg and V4641 Sgr, since they also display strong and variable optical wind features as well as similar flaring behavior. </p
    corecore