363 research outputs found

    To ring or not to ring, the tale of black hole quasi-normal modes

    Full text link
    Extracting quasi-normal modes from compact binary mergers to perform black hole spectroscopy is one of the fundamental pillars in current and future strong-gravity tests. Among the most remarkable findings of recent works is that including a large number of overtones not only reduces the mismatch of the fitted ringdown but also allows one to extract black hole parameters from a ringdown analysis that goes well within the non-linear merger part. At the same time, it is well understood that several details of the ringdown analysis have important consequences for the question of whether overtones are present or not, and subsequently, to what extent one can claim to perform black hole spectroscopy. To clarify and tackle some aspects of overtone fitting, we revisit the clearer problem of wave propagation in the scalar Regge-Wheeler and P\"oschl-Teller potentials. This set-up, which is to some extent qualitatively very similar to the non-linear merger-ringdown regime, indicates that using even an approximate model for the overtones yields an improved extraction of the black hole mass at early ringdown times. We find that the relevant parameter is the number of included modes rather than using the correct model for the overtones themselves. This further adds evidence to the proposal that large overtone numbers may instead remove non-quasi-normal mode contributions that are relevant at early times of a ringdown, but do not necessarily correspond to the physical excitation of modes of the system.Comment: 9 pages, 9 figure

    Noise-induced switching between vortex states with different polarization in classical two-dimensional easy-plane magnets

    Full text link
    In the 2-dimensional anisotropic Heisenberg model with XY-symmetry there are non-planar vortices which exhibit a localized structure of the z-components of the spins around the vortex center. We study how thermal noise induces a transition of this structure from one polarization to the opposite one. We describe the vortex core by a discrete Hamiltonian and consider a stationary solution of the Fokker-Planck equation. We find a bimodal distribution function and calculate the transition rate using Langer's instanton theory (1969). The result is compared with Langevin dynamics simulations for the full many-spin model.Comment: 15 pages, 4 figures, Phys. Rev. B., in pres

    Aqueous Self-Assembly of a Protein-Mimetic Ampholytic Block Copolypeptide

    No full text
    This report describes the aggregation behavior of an ABC-type ampholytic block copolypeptide, poly(ethylene oxide)-block-poly(l-lysine)-block-poly(l-glutamate), in aqueous media in dependence of pH. Polypeptide secondary structures and self-assemblies are investigated by circular dichroism (CD), Fourier transform infrared (FT-IR) and NMR spectroscopy, zeta potential measurements, analytical ultracentrifugation (AUC), dynamic/static light scattering (DLS/SLS), and cryogenic transmission electron microscopy (cryo-TEM). The polymer chains tend to form vesicles when the hydrophobic polypeptide helix is located at the chain end (acidic pH) and are existing as single chains when it is located in the center and flanked by the two hydrophilic segments (basic pH). Precipitation occurs in the intermediate pH range due to polyion complexation of the charged polypeptide segments

    Intrinsic hole mobility and trapping in a regio-regular poly(thiophene)

    Full text link
    The transport properties of high-performance thin-film transistors (TFT) made with a regio-regular poly(thiophene) semiconductor (PQT-12) are reported. The room-temperature field-effect mobility of the devices varied between 0.004 cm2/V s and 0.1 cm2/V s and was controlled through thermal processing of the material, which modified the structural order. The transport properties of TFTs were studied as a function of temperature. The field-effect mobility is thermally activated in all films at T<200 K and the activation energy depends on the charge density in the channel. The experimental data is compared to theoretical models for transport, and we argue that a model based on the existence of a mobility edge and an exponential distribution of traps provides the best interpretation of the data. The differences in room-temperature mobility are attributed to different widths of the shallow localized state distribution at the edge of the valence band due to structural disorder in the film. The free carrier mobility of the mobile states in the ordered regions of the film is the same in all structural modifications and is estimated to be between 1 and 4 cm2/V s.Comment: 20 pages, 8 figure

    The histone methyltransferase SUV420H2 and Heterochromatin Proteins HP1 interact but show different dynamic behaviours

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Histone lysine methylation plays a fundamental role in chromatin organization and marks distinct chromatin regions. In particular, trimethylation at lysine 9 of histone H3 (H3K9) and at lysine 20 of histone H4 (H4K20) governed by the histone methyltransferases SUV39H1/2 and SUV420H1/2 respectively, have emerged as a hallmark of pericentric heterochromatin. Controlled chromatin organization is crucial for gene expression regulation and genome stability. Therefore, it is essential to analyze mechanisms responsible for high order chromatin packing and in particular the interplay between enzymes involved in histone modifications, such as histone methyltransferases and proteins that recognize these epigenetic marks.</p> <p>Results</p> <p>To gain insights into the mechanisms of SUV420H2 recruitment at heterochromatin, we applied a tandem affinity purification approach coupled to mass spectrometry. We identified heterochromatin proteins HP1 as main interacting partners. The regions responsible for the binding were mapped to the heterochromatic targeting module of SUV420H2 and HP1 chromoshadow domain. We studied the dynamic properties of SUV420H2 and the HP1 in living cells using fluorescence recovery after photobleaching. Our results showed that HP1 proteins are highly mobile with different dynamics during the cell cycle, whereas SUV420H2 remains strongly bound to pericentric heterochromatin. An 88 amino-acids region of SUV420H2, the heterochromatic targeting module, recapitulates both, HP1 binding and strong association to heterochromatin.</p> <p>Conclusion</p> <p>FRAP experiments reveal that in contrast to HP1, SUV420H2 is strongly associated to pericentric heterochromatin. Then, the fraction of SUV420H2 captured and characterized by TAP/MS is a soluble fraction which may be in a stable association with HP1. Consequently, SUV420H2 may be recruited to heterochromatin in association with HP1, and stably maintained at its heterochromatin sites in an HP1-independent fashion.</p

    Evidence for Different Freeze-Out Radii of High- and Low-Energy Pions Emitted in Au+Au Collisions at 1 GeV/nucleon

    Full text link
    Double differential production cross sections of negative and positive pions and the number of participating protons have been measured in central Au+Au collisions at 1 GeV per nucleon incident energy. At low pion energies the pi^- yield is strongly enhanced over the pi^+ yield. The energy dependence of the pi^-/pi^+ ratio is assigned to the Coulomb interaction of the charged pions with the protons in the reaction zone. The deduced Coulomb potential increases with increasing pion c.m. energy. This behavior indicates different freeze-out radii for different pion energies in the c.m.~frame.Comment: IKDA is the Institute for Nuclear Physics in Darmstadt/German

    Artifical compound eyes - Different concepts and their application to ultra flat image acquisition sensors

    Get PDF
    Two different approaches for ultra flat image acquisition sensors on the basis of artificial compound eyes are examined. In apposition optics the image reconstruction is based on moiré- or static sampling while the superposition eye approach produces an overall image. Both types of sensors are compared with respect to theoretical limitations of resolution, sensitivity and system thickness. Explicit design rules are given. A paraxial 3×3 matrix formalism is used to describe the arrangement of three microlens arrays with different pitches to find first order parameters of artificial superposition eyes. The model is validated by analysis of the system with raytracing software. Measurements of focal length of anamorphic reflow lenses, which are key components of the superposition approach, under oblique incidence are performed. For the second approach, the artificial apposition eye, a first demonstrator system is presented. The monolithic device consists of a UV-replicated reflow microlens array on a thin silica-substrate with a pinhole array in a metal layer on the backside. The pitch of the pinholes differs from the lens array pitch to enable an individual viewing angle for each channel. Imaged test patterns are presented and measurements of the angular sensitivity function are compared to calculations using commercial raytracing software

    Critical dynamics in the 2d classical XY-model: a spin dynamics study

    Full text link
    Using spin-dynamics techniques we have performed large-scale computer simulations of the dynamic behavior of the classical three component XY-model (i.e. the anisotropic limit of an easy-plane Heisenberg ferromagnet), on square lattices of size up to 192^2, for several temperatures below, at, and above T_KT. The temporal evolution of spin configurations was determined numerically from coupled equations of motion for individual spins by a fourth order predictor-corrector method, with initial spin configurations generated by a hybrid Monte Carlo algorithm. The neutron scattering function S(q,omega) was calculated from the resultant space-time displaced spin-spin correlation function. Pronounced spin-wave peaks were found both in the in-plane and the out-of-plane scattering function over a wide range of temperatures. The in-plane scattering function S^xx also has a large number of clear but weak additional peaks, which we interpret to come from two-spin-wave scattering. In addition, we observed a small central peak in S^xx, even at temperatures well below the phase transition. We used dynamic finite size scaling theory to extract the dynamic critical exponent z. We find z=1.00(4) for all T <= T_KT, in excellent agreement with theoretical predictions, although the shape of S(q,omega) is not well described by current theory.Comment: 31 pages, LaTex, 13 figures (38 subfigures) included as eps-files, needs psfig, 260 K

    QuiKey – An Efficient Semantic Command Line

    Full text link
    Abstract. QuiKey is an interaction approach that offers interactive fine grained access to structured information sources in a light weight user interface. It is designed to be highly interaction efficient for searching, browsing and authoring semantic knowledge bases as well as incremen-tally constructing complex queries. Empirical evaluation using a compar-ative GOMS Analysis and a user study confirm interaction efficiency.
    • …
    corecore