37 research outputs found
A note on the distribution and abundance of blue whales (<i>Balaenoptera musculus</i>) in the Central and Northeast North Atlantic
The distribution and abundance of blue whales (Balaenoptera musculus) was assessed from ship surveys conducted in the Central and Northeast Atlantic in 1987, 1989, 1995 and 2001. Blue whales were most commonly sighted off western Iceland, and to a lesser extent northeast of Iceland. They were very rare or absent in the Northeast Atlantic. Sightings were combined over all surveys to estimate the detection function using standard line transect methodology, with the addition of a covariate to account for differences between surveys. Total abundance was highest in 1995 (979, 95% CI 137-2,542) and lowest in 1987 (222, 95% CI 115-440). Uncertainty in species identity had little effect on estimates of abundance. There was a significant positive trend in abundance northeast of Iceland and in the total survey area
Minke whale abundance estimation from the NASS 1987 and 2001 aerial cue–counting surveys taking appropriate account of distance estimation errors
We estimate the abundance of minke whales (Balaenoptera acutorostrata) from the Icelandic coastal shelf aerial surveys carried out as part of the 1987 and 2001 North Atlantic Sightings Surveys (NASS). In the case of the 1987 survey, the probability of detecting animals at distance zero (g(0)) is very close to 1 but there is substantial random measurement error in estimating distances. To estimate abundance from these data, we use methods which assume g(0)=1 but which includea distance measurement error model. In the case of the 2001 survey, measurement errors were sufficiently small to be negligible, and we use double platform methods which estimate g(0) and assume no measurement error to estimate abundance. From the 1987 survey, we estimate abundance to be 24,532 animals, with 95% CI (13,399; 44,916). From the 2001 NASS survey data, minke whale abundance is estimated to be 43,633 animals, with 95% CI (30,148; 63,149).Publisher PDFPeer reviewe
Decline in abundance and apparent survival rates of fin whales (Balaenoptera physalus) in the northern Gulf of St. Lawrence
A. Schleimer was supported by the Luxembourg National Research Fund (FNR; AFR/11256673).Estimates of abundance and survivorship provide quantifiable measures to monitor populations and to define and understand their conservation status. This study investigated changes in abundance and survival rates of fin whales (Balaenoptera physalus) in the northern Gulf of St. Lawrence in the context of anthropogenic pressures and changing environmental conditions. A long‐term data set, consisting of 35 years of photo‐identification surveys and comprising more than 5,000 identifications of 507 individuals, formed the basis of this mark–recapture study. Based on model selection using corrected Akaike Information Criterion, the most parsimonious Cormack–Jolly–Seber model included a linear temporal trend in noncalf apparent survival rates with a sharp decline in the last 5 years of the study and a median survival rate of 0.946 (95% confidence interval (CI) 0.910–0.967). To account for capture heterogeneity due to divergent patterns of site fidelity, agglomerative hierarchical cluster analysis was employed to categorize individuals based on their annual and survey site fidelity indices. However, the negative trend in survivorship remained and was corroborated by a significant decline in the estimated super‐population size from 335 (95% CI 321–348) individuals in 2004–2010 to 291 (95% CI 270–312) individuals in 2010–2016. Concurrently, a negative trend was estimated in recruitment to the population, supported by a sharp decrease in the number of observed calves. Ship strikes and changes in prey availability are potential drivers of the observed decline in fin whale abundance. The combination of clustering methods with mark–recapture represents a flexible way to investigate the effects of site fidelity on demographic variables and is broadly applicable to other individual‐based studies.Publisher PDFPeer reviewe
Evidence of unidirectional hybridization and second‐generation adult hybrid between the two largest animals on Earth, the fin and blue whales
Biodiversity in the oceans has dramatically declined since the beginning of the industrial era, with accelerated loss of marine biodiversity impairing the ocean's capacity to maintain vital ecosystem services. A few organisms epitomize the damaging and long‐lasting effects of anthropogenic exploitation: some whale species, for instance, were brought to the brink of extinction, with their population sizes reduced to such low levels that may have cause a significant disruption to their reproductive dynamics and facilitated hybridization events. The incidence of hybridization is nevertheless believed to be rare and very little information exist on its directionality. Here, using genetic markers, we show that all but one whale hybrid sample collected in Icelandic waters originated from the successful mating of male fin whale and female blue whale, thus suggesting unidirectional hybridization. We also demonstrate for the first time the existence of a second‐generation adult (male) hybrid resulting from a backcross between a female hybrid and a pure male fin whale. The incidence of hybridization events between fin and blue whales is likely underestimated and the observed unidirectional hybridization (for F1 and F2 hybrids) is likely to induce a reproductive loss in blue whale, which may represent an additional challenge to its recovery in the Atlantic Ocean compared to other rorquals
Combined line-transect and cue-count estimate of sperm whale abundance in the North Atlantic, from Icelandic NASS-2001 shipboard survey
Sperm whales (Physeter macrocephalus) pose a particular problem to shipboard surveys as they dive for extended periods and are therefore likely to be missed (not available) even if they are right under the track line. To address these problems the NAMMCO planning committee for the NASS 2001 survey drew up guidelines to be followed when sperm whales were sighted. This required every deep dive to be recorded and considered to be a cue, from which a cue-count estimate is calculated if the cue rate is known. For those whales that did not dive before coming abeam, a conventional line-transect estimate is calculated, which gives an instantaneous surface estimate from which a total estimate can be obtained if the proportion of the time spent at the surface is known. These estimates are compared and combined. Precise dive cycle information is missing for the mostly single all male sperm whales in this area but a preliminary estimate of 11,185 (cv 0.34) is obtained for the surveyed area with an assumed surface time of 20% and two deep dives per hour
Minke whale abundance estimation from the NASS 1987 and 2001 aerial cue–counting surveys taking appropriate account of distance estimation errors
We estimate the abundance of minke whales (Balaenoptera acutorostrata) from the Icelandic coastal shelf aerial surveys carried out as part of the 1987 and 2001 North Atlantic Sightings Surveys (NASS). In the case of the 1987 survey, the probability of detecting animals at distance zero (g(0)) is very close to 1 but there is substantial random measurement error in estimating distances. To estimate abundance from these data, we use methods which assume g(0)=1 but which includea distance measurement error model. In the case of the 2001 survey, measurement errors were sufficiently small to be negligible, and we use double platform methods which estimate g(0) and assume no measurement error to estimate abundance. From the 1987 survey, we estimate abundance to be 24,532 animals, with 95% CI (13,399; 44,916). From the 2001 NASS survey data, minke whale abundance is estimated to be 43,633 animals, with 95% CI (30,148; 63,149)
Trends in the distribution and abundance of cetaceans from aerial surveys in Icelandic coastal waters, 1986-2001
Aerial surveys were carried out in coastal Icelandic waters 4 times between 1986 and 2001 as part of the North Atlantic Sightings Surveys. The surveys had nearly identical designs in 3 of the 4 years. The target species was the minke whale (Balaenoptera acutorostrata) but all species encountered were recorded. Sighting rate and density from line transect analysis were used as indices of relative abundance to monitor trends over the period, and abundance estimates corrected for perception biases were calculated for some species from the 2001 survey. More than 11 species were sighted, of which the most common were the minke whale, humpback whale (Megaptera novaeangliae), dolphins of genus Lagenorhychus, and the harbour porpoise (Phocoena phocoena). Minke whales anddolphins showed little change in distribution or abundance over the period. There were an estimated 31,653 (cv 0.30) dolphins in the survey area in 2001. Humpback whales increased rapidly at a rate of about 12%, with much of the increase occurring off eastern and northeastern Iceland. In 2001 there were an estimated 4,928 (cv 0.463) humpback whales in the survey area. The relative abundance of harbour porpoises decreased over the period, but estimates for this species were compromised by uncorrected perception biases and poor coverage. The ecological and historical significance of these findings with respect to previous whaling activities and present-day fisheries is discussed
Estimates of the abundance of minke whales (<i>Balaenoptera acutorostrata</i>) from Faroese and Icelandic NASS shipboard surveys
North Atlantic Sightings Surveys for cetaceans were carried out Northeast and Central Atlantic in 1987, 1989, 1995 and 2001. Here we provide estimates of density and abundance for minke whales from the Faroese and Icelandic ship surveys. The estimates are not corrected for availability or perception biases. Double platform data collected in 2001 indicates that perception bias is likely considerable for this species. However comparison of corrected estimates of densityfrom aerial surveys with a ship survey estimate from the same area suggests that ship surveys can be nearly unbiased under optimal survey conditions with high searching effort. There were some regional changes in density over the period but no overall changes in density and abundance. Given the recent catch history for minke whales in this area, we would not expect to see changes in abundance due to exploitation that would be detectable with these surveys
Minke whale abundance estimation from the NASS 1987 and 2001 aerial cue–counting surveys taking appropriate account of distance estimation errors
We estimate the abundance of minke whales (Balaenoptera acutorostrata) from the Icelandic coastal shelf aerial surveys carried out as part of the 1987 and 2001 North Atlantic Sightings Surveys (NASS). In the case of the 1987 survey, the probability of detecting animals at distance zero (g(0)) is very close to 1 but there is substantial random measurement error in estimating distances. To estimate abundance from these data, we use methods which assume g(0)=1 but which includea distance measurement error model. In the case of the 2001 survey, measurement errors were sufficiently small to be negligible, and we use double platform methods which estimate g(0) and assume no measurement error to estimate abundance. From the 1987 survey, we estimate abundance to be 24,532 animals, with 95% CI (13,399; 44,916). From the 2001 NASS survey data, minke whale abundance is estimated to be 43,633 animals, with 95% CI (30,148; 63,149)