31 research outputs found

    On the multiplicity of arrangements of congruent zones on the sphere

    Full text link
    Consider an arrangement of nn congruent zones on the dd-dimensional unit sphere Sd1S^{d-1}, where a zone is the intersection of an origin symmetric Euclidean plank with Sd1S^{d-1}. We prove that, for sufficiently large nn, it is possible to arrange nn congruent zones of suitable width on Sd1S^{d-1} such that no point belongs to more than a constant number of zones, where the constant depends only on the dimension and the width of the zones. Furthermore, we also show that it is possible to cover Sd1S^{d-1} by nn congruent zones such that each point of Sd1S^{d-1} belongs to at most AdlnnA_d\ln n zones, where the AdA_d is a constant that depends only on dd. This extends the corresponding 33-dimensional result of Frankl, Nagy and Nasz\'odi (2016). Moreover, we also examine coverings of Sd1S^{d-1} with congruent zones under the condition that each point of the sphere belongs to the interior of at most d1d-1 zones

    Heat stress causes spatially-distinct membrane re-modelling in K562 leukemia cells

    Get PDF
    Cellular membranes respond rapidly to various environmental perturbations. Previously we showed that modulations in membrane fluidity achieved by heat stress (HS) resulted in pronounced membrane organization alterations which could be intimately linked to the expression and cellular distribution of heat shock proteins. Here we examine heat-induced membrane changes using several visualisation methods. With Laurdan two-photon microscopy we demonstrate that, in contrast to the enhanced formation of ordered domains in surface membranes, the molecular disorder is significantly elevated within the internal membranes of cells preexposed to mild HS. These results were compared with those obtained by anisotropy, fluorescence lifetime and electron paramagnetic resonance measurements. All probes detected membrane changes upon HS. However, the structurally different probes revealed substantially distinct alterations in membrane heterogeneity. These data call attention to the careful interpretation of results obtained with only a single label. Subtle changes in membrane microstructure in the decision-making of thermal cell killing could have potential application in cancer therapy

    F-Spondin/spon1b Expression Patterns in Developing and Adult Zebrafish

    Get PDF
    F-spondin, an extracellular matrix protein, is an important player in embryonic morphogenesis and CNS development, but its presence and role later in life remains largely unknown. We generated a transgenic zebrafish in which GFP is expressed under the control of the F-spondin (spon1b) promoter, and used it in combination with complementary techniques to undertake a detailed characterization of the expression patterns of F-spondin in developing and adult brain and periphery. We found that F-spondin is often associated with structures forming long neuronal tracts, including retinal ganglion cells, the olfactory bulb, the habenula, and the nucleus of the medial longitudinal fasciculus (nMLF). F-spondin expression coincides with zones of adult neurogenesis and is abundant in CSF-contacting secretory neurons, especially those in the hypothalamus. Use of this new transgenic model also revealed F-spondin expression patterns in the peripheral CNS, notably in enteric neurons, and in peripheral tissues involved in active patterning or proliferation in adults, including the endoskeleton of zebrafish fins and the continuously regenerating pharyngeal teeth. Moreover, patterning of the regenerating caudal fin following fin amputation in adult zebrafish was associated with F-spondin expression in the blastema, a proliferative region critical for tissue reconstitution. Together, these findings suggest major roles for F-spondin in the CNS and periphery of the developing and adult vertebrate

    Abstracts from the 20th International Symposium on Signal Transduction at the Blood-Brain Barriers

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/138963/1/12987_2017_Article_71.pd

    Book Reviews

    No full text
    Lukaustas, A. J. - Rivera-Batiz, F. L. (eds): The Political Economy of the East Asian Crisis and Its Aftermath: Tigers in Distress (Cheltenham, UK, Northampton, MA, USA: Edward Edgar, 2001, 272 pp.)  Lal, D.: Unintended Consequences. The Impact of Factor Endowments, Culture, and Politics on Long-run Economic Performance (London: The MIT Press, 1998, 287 pp.)  Csáki, Gy. (ed.): Befektetésösztönzés és muködotoke-bevonás. Lehetoségek az Európai Uniós csatlakozás elokészítésének idoszakában. (Investment Promotion and FDI inflow. Opportunities in the Period of the Preparation for EU Membership) (Budapest: Oktatási Minisztérium, 2000, 158 pp.

    On the angle sum of lines

    No full text

    Dynamic, yet structured: The cell membrane three decades after the Singer–Nicolson model

    No full text
    The fluid mosaic membrane model proved to be a very useful hypothesis in explaining many, but certainly not all, phenomena taking place in biological membranes. New experimental data show that the compartmentalization of membrane components can be as important for effective signal transduction as is the fluidity of the membrane. In this work, we pay tribute to the Singer–Nicolson model, which is near its 30th anniversary, honoring its basic features, “mosaicism” and “diffusion,” which predict the interspersion of proteins and lipids and their ability to undergo dynamic rearrangement via Brownian motion. At the same time, modifications based on quantitative data are proposed, highlighting the often genetically predestined, yet flexible, multilevel structure implementing a vast complexity of cellular functions. This new “dynamically structured mosaic model” bears the following characteristics: emphasis is shifted from fluidity to mosaicism, which, in our interpretation, means nonrandom codistribution patterns of specific kinds of membrane proteins forming small-scale clusters at the molecular level and large-scale clusters (groups of clusters, islands) at the submicrometer level. The cohesive forces, which maintain these assemblies as principal elements of the membranes, originate from within a microdomain structure, where lipid–lipid, protein–protein, and protein–lipid interactions, as well as sub- and supramembrane (cytoskeletal, extracellular matrix, other cell) effectors, many of them genetically predestined, play equally important roles. The concept of fluidity in the original model now is interpreted as permissiveness of the architecture to continuous, dynamic restructuring of the molecular- and higher-level clusters according to the needs of the cell and as evoked by the environment
    corecore