349 research outputs found

    Bistable and dynamic states of parametrically excited ultrasound in a fluid-filled cavity

    Full text link
    In this paper we have considered the problem of parametric sound generation in an acoustic resonator flled with a fluid, taking explicitely into account the influence of the nonlinearly generated second harmonic. A simple model is presented, and its stationary solutions obtained. The main feature of these solutions is the appearance of bistable states of the fundamental field resulting from the coupling to the second harmonic. An experimental setup was designed to check the predictions of the theory. The results are consistent with the predicted values for the mode amplitudes and parametric thresholds. At higher driving values a self-modulation of the amplitudes is observed. We identify this phenomenon with a secondary instability previously reported in the frame of the theoretical model.Comment: 5 figures. Submitted to JAS

    Domain wall dynamics in an optical Kerr cavity

    Full text link
    An anisotropic (dichroic) optical cavity containing a self-focusing Kerr medium is shown to display a bifurcation between static --Ising-- and moving --Bloch-- domain walls, the so-called nonequilibrium Ising-Bloch transition (NIB). Bloch walls can show regular or irregular temporal behaviour, in particular, bursting and spiking. These phenomena are interpreted in terms of the spatio-temporal dynamics of the extended patterns connected by the wall, which display complex dynamical behaviour as well. Domain wall interaction, including the formation of bound states is also addressed.Comment: 15 pages Tex file with 11 postscript figures. Resubmitted to Phys. Rev.

    Nondiffractive sonic crystals

    Get PDF
    We predict theoretically the nondiffractive propagation of sonic waves in periodic acoustic media (sonic crystals), by expansion into a set of plane waves (Bloch mode expansion), and by finite difference time domain calculations of finite beams. We also give analytical evaluations of the parameters for nondiffractive propagation, as well as the minimum size of the nondiffractively propagating acoustic beams.Comment: 7 figures, submitted to J. Acoust. Soc. A

    Ultradiscrete kinks with supersonic speed in a layered crystal with realistic potentials

    Get PDF
    We develop a dynamical model of the propagating nonlinear localized excitations, supersonic kinks, in the cation layer in a silicate mica crystal. We start from purely electrostatic Coulomb interaction and add the Ziegler-Biersack-Littmark short-range repulsive potential and the periodic potential produced by other atoms of the lattice. This approach allows the construction of supersonic kinks which can propagate in the lattice within a large range of energies and velocities. The interparticle distances in the lattice kinks with high energy are physically reasonable values. The introduction of the periodic lattice potential results in the important feature that the kinks propagate with a single velocity and a single energy which are independent on the excitation conditions. The found kinks are ultra-discrete and can be described with the "magic wave number" q2π/3aq\simeq 2\pi/3a, which was previously revealed in the nonlinear sinusoidal waves and supersonic kinks in the Fermi-Pasta-Ulam lattice. The extreme discreteness of the supersonic kinks, with basically two particles moving at the same time, allows the interpretation of their double-kink structure. The energy of the supersonic kinks is between the possible source of 40^{40}K recoil in beta decay and the energy necessary for the ejection of an atom at the border as has been found experimentally.Comment: 14 pages, 15 figure

    Nonlinear waves in a chain of magnetically coupled pendula

    Get PDF
    A motivation for the study of reduced models like one-dimensional systems in Solid State Physics is the complexity of the full problem. In recent years our group has studied theoretically, numerically and experimentally wave propagation in lattices of nonlinearly coupled oscillators. Here, we present the dynamics of magnetically coupled pendula lattices. These macroscopic systems can model the dynamical processes of matter or layered systems. We report the results obtained for harmonic wave propagation in these media, and the different regimes of mode conversion into higher harmonics strongly influenced by dispersion and discreteness, including the phenomenon of acoustic dilatation of the chain, as well as some results on the propagation of localized waves i.e., solitons and kinks.Generalitat Valenciana APOSTD/2017/042Umiversitat Politècnica de València PAID-01-14Ministerio de Economía y Competitividad (MINECO), Spain FIS2015-65998-C2-2-PJunta de Andalucía 2017/FQM-28

    Quodons in Mica 2013

    Get PDF
    Quodons in Mica 2013 INDEX 1. Introduction. 3. JFR Archilla, SMM Coelho, FD Auret, V Dubinko and V Hizhnyakov. Experimental observation of moving discrete breathers in germanium. 5. L Brzihik. Bisolectrons in harmonic and anharmonic lattices. 6. AP Chetverikov. Solitons and charge transport in triangular and quadratic Morse lattices. 7. LA Cisneros-Ake. Travelling coherent structures in the electron transport in 2D anharmonic crystal lattices. 8. SMM Coelho, FD Auret, JM Nel and JFR Archilla. The origin of defects induced in ultra-pure germanium by Electron Beam Deposition. 10. S Comorosan and M Apostol. Theory vs. Reality - Localized excitations induced by optical manipulation of proteins, as a different approach to link experiments with theory. 12. L Cruzeiro. The amide I band of crystalline acetanilide: old data under new light. 13. SV Dmitriev and AA Kistanov. Moving discrete breathers in crystals with NaCl structure. 15. V Dubinko, JFR Archilla, SMM Coelho and V Hizhnyakov. Modeling of the annealing of radiation-induced defects in germanium by moving discrete breathers. 16. JC Eilbeck. Numerical simulations of nonlinear modes in mica: past, present and future. 17. A Ferrando, C Mili\'an, DE Ceballos-Herrera and Dmitry V. Skryabin. Soliplasmon resonances at metal-dielectric interfaces. 19. YuB Gaididei. Energy localization in nonlinear systems with flexible geometry. 20. D Hennig. Existence and non-existence of breather solutions in damped and driven nonlinear lattices. 21. P Jason and M Johansson. Existence, dynamics and mobility of Quantum Compactons in an extended Bose-Hubbard model. 22. N. Jiménez, JFR Archilla, Y. Kosevich, V. Sánchez-Morcillo and LM García-Raffi. A crowdion in mica. Between K40 recoil and transmission sputtering. 24. M Johansson. Strongly localized moving discrete solitons (breathers): new ways to beat the Peierls-Nabarro barrier. 26. YA Kosevich and AV Savin. Energy transport in molecular chains with combined anharmonic potentials of pair interatomic interaction. 28. B Malomed, C Mejía-Cortés and RA Vicencio. Mobile discrete solitons in the one-dimensional lattice with the cubic-quintic nonlinearity. 29. FM Russell. Recording process in iron-rich muscovite crystals. 30. L Salasnich. Bright solitons of attractive Bose-Einstein condensates confined in quasi-1D optical lattice. 31. V Sánchez-Morcillo, LM, Garcíaa-Raffi, V. Romero-Garcíaa, R. Picó, A. Cebrecos, and Kestutis Staliunas. Wave localization in chirped sonic crystals. 32. P Selyschev, V Sugakov and T Didenko. Peculiarities of the change of temperature and heat transfer under irradiation. 33. K Staliunas. Taming of Modulation Instability: Manipulation, and Complete Suppression of Instability by Spatio-Temporal Periodic Modulation. 34. G Tsironis. Gain-Driven Breathers in PT-Symmetric Metamaterials. 36. JAD Wattis and IA Butt. Moving breather modes in two-dimensional lattices.Ministerio de Ciencia e Innovación FIS2008-0484

    Natural sonic crystal absorber constituted of seagrass (Posidonia Oceanica) fibrous spheres

    Full text link
    [EN] We present a 3-dimensional fully natural sonic crystal composed of spherical aggregates of fibers (called Aegagropilae) resulting from the decomposition of Posidonia Oceanica. The fiber network is first acoustically characterized, providing insights on this natural fiber entanglement due to turbulent flow. The Aegagropilae are then arranged on a principal cubic lattice. The band diagram and topology of this structure are analyzed, notably via Argand representation of its scattering elements. This fully natural sonic crystal exhibits excellent sound absorbing properties and thus represents a sustainable alternative that could outperform conventional acoustic materials.This article is based upon work from COST Action DENORMS CA15125, supported by COST(European Cooperation in Science and Technology). The authors gratefully acknowledge the ANR-RGC METARoom (ANR-18-CE08-0021) project, the project HYPERMETA funded under the program Etoiles Montantes of the Region Pays de la Loire, and the project PID2019-109175GB-C22 funded by the Spanish Ministry of Science and Innovation. N.J. acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities (MICINN) through grant "Juan de la Cierva - Incorporacion" (IJC2018-037897-I). The authors would like to thank V. Pagneux and R. Pico Vila for useful discussions and J. Barber and C. Dordoni for their help in collecting the samples.Barguet, L.; Romero-García, V.; Jimenez, N.; García-Raffi, LM.; Sánchez Morcillo, VJ.; Groby, J. (2021). Natural sonic crystal absorber constituted of seagrass (Posidonia Oceanica) fibrous spheres. Scientific Reports. 11(1):1-8. https://doi.org/10.1038/s41598-020-79982-9S1811

    Acoustic behavior of the VEGA launch pad environment

    Full text link
    [EN] The acoustic pressure levels experienced by the spacecraft and launchers during the lift-off is due among other factor by the reflection of the sound waves on the launch pad. The acoustic load distribution in the area of the launcher depends on the geometric, mechanical and acoustic characteristics of the ground facilities. This work is intended to study the acoustic environment of the launch pad. A numerical and experimental investigation is developed in order to study in the linear regime the acoustic behaviour of a subscale model of the VEGA's launch pad. The acoustic measurements are performed in an anechoic chamber using an electroacoustic source that emits incoherent noise, mimicking the real acoustic source. The acoustic pressure field is measured at different positions in front of the launch pad mock-up, in the area where the acoustic waves are reflected. Among the future perspectives of this work is to study and develop new methods for the mitigation of the sound pressure levels.Authors acknowledge the support of the European Space Agency under contract ¿Sonic Crystals For Noise Reduction At The Launch Pad¿ ESA ITT 1-7094 (ITI) and the 441-2015 Co-Sponsered PhD ¿Acoustic Reduction Methods for the Launch Pad¿. The work was supported by Spanish Ministry of Economy and Innovation (MINECO) and European Union FEDER through project FIS2015-65998-C2-2. Authors aknowledge Dhéric Mutel, Cyril Bernard and Clément Jost for their contribution to this workPicó Vila, R.; Herrero-Durá, I.; Sánchez Morcillo, VJ.; Salmerón-Contreras, LJ.; García-Raffi, LM. (2016). Acoustic behavior of the VEGA launch pad environment. Universidade do Porto. 1-6. http://hdl.handle.net/10251/181097S1

    Cavity solitons in bidirectional lasers

    Full text link
    We show theoretically that a broad area bidirectional laser with slightly different cavity losses for the two counterpropagating fields sustains cavity solitons (CSs). These structures are complementary, i.e., there is a bright (dark) CS in the field with more (less) losses. Interestingly, the CSs can be written/erased by injecting suitable pulses in any of the two counterpropagating fields.Comment: 4 figure

    Solitary waves in nonlinear phononic crystals

    Full text link
    [EN] We discuss two possible regimes of solitary wave formation in acoustic layered media. In the weakly dispersive limit, KdV-type solitons are formed, consisting of broad pulses with a width much larger than the lattice periodicity. Such KdV solitons are shown to exist even far from the weakly dispersive conditions. On the other hand, in the strongly dispersive regime, gap acoustic solitons are demonstrated. They are formed by a fast carrier wave inside the band-gap of the structure, near the Bragg frequency (whose propagation is not allowed in the case of linear waves), modulated by a wide envelope, whose width lies inside the gap. Gap solitons propagate slower than linear waves, or can be even reach a stationary non-propagating state within the medium. The parameters for a realistic acoustic medium supporting both types of solitary waves are discussedThe work was supported by Spanish Ministry of Economy and Innovation (MINECO) and European Union FEDER through project FIS2015-65998-C2-2.Mehrem, A.; Picó Vila, R.; Sánchez Morcillo, VJ.; García-Raffi, LM.; Salmerón-Contreras, LJ.; Jimenez, N.; Staliunas, K. (2016). Solitary waves in nonlinear phononic crystals. Universidade do Porto. 1-7. http://hdl.handle.net/10251/183355S1
    corecore