17 research outputs found

    Factors influencing nucleo-cytoplasmic trafficking: which matter?

    Get PDF

    The nucleotidohydrolases DCTPP1 and dUTPase are involved in the cellular response to decitabine

    Get PDF
    Decitabine (5-aza-2acute;-deoxycytidine, aza-dCyd) is an anticancer drug used clinically for the treatment of myelodysplastic syndromes and acute myeloid leukemia that can act as a DNA-demethylating or genotoxic agent in a dose-dependent manner. On the other hand, DCTPP1 and dUTPase are two "house-cleaning" nucleotidohydrolases involved in the elimination of non-canonical nucleotides. Here we show that exposure of HeLa cells to decitabine up-regulates the expression of several pyrimidine metabolic enzymes including DCTPP1, dUTPase, dCMP deaminase and thymidylate synthase thus suggesting their contribution to the cellular response to this anticancer nucleoside. We present several lines of evidence supporting that, in addition to the formation of aza-dCTP, an alternative cytotoxic mechanism for decitabine may involve the formation of aza-dUMP, a potential thymidylate synthase inhibitor. Indeed, dUTPase or DCTPP1 down-regulation enhanced the cytotoxic effect of aza-dCyd producing an accumulation of nucleoside triphosphates containing uracil as well as uracil misincorporation and double-strand breaks in genomic DNA. Moreover, DCTPP1 hydrolyzes the triphosphate form of decitabine with similar kinetic efficiency than its natural substrate dCTP and prevents decitabine-induced global DNA demethylation. The data suggest that the nucleotidohydrolases DCTPP1 and dUTPase are factors involved in the mode of action of decitabine with potential value as enzymatic targets to improve decitabine-based chemotherapy

    A Hidden Active Site in the Potential Drug Target Mycobacterium tuberculosis dUTPase Is Accessible through Small Amplitude Protein Conformational Changes

    Get PDF
    dUTPases catalyze the hydrolysis of dUTP into dUMP and pyrophosphate to maintain the proper nucleotide pool for DNA metabolism. Recent evidence suggests that dUTPases may also represent a selective drug target in mycobacteria because of the crucial role of these enzymes in maintaining DNA integrity. Nucleotide-hydrolyzing enzymes typically harbor a buried ligand-binding pocket at interdomain or intersubunit clefts, facilitating proper solvent shielding for the catalyzed reaction. The mechanism by which substrate binds this hidden pocket and product is released in dUTPases is unresolved because of conflicting crystallographic and spectroscopic data. We sought to resolve this conflict by using a combination of random acceleration molecular dynamics (RAMD) methodology and structural and biochemical methods to study the dUTPase from Mycobacterium tuberculosis In particular, the RAMD approach used in this study provided invaluable insights into the nucleotide dissociation process that reconciles all previous experimental observations. Specifically, our data suggest that nucleotide binding takes place as a small stretch of amino acids transiently slides away and partially uncovers the active site. The in silico data further revealed a new dUTPase conformation on the pathway to a relatively open active site. To probe this model, we developed the Trp21 reporter and collected crystallographic, spectroscopic, and kinetic data that confirmed the interaction of Trp21 with the active site shielding C-terminal arm, suggesting that the RAMD method is effective. In summary, our computational simulations and spectroscopic results support the idea that small loop movements in dUTPase allow the shuttlingof the nucleotides between the binding pocket and the solvent

    Heterologous expression of CTP:phosphocholine cytidylyltransferase from Plasmodium falciparum rescues Chinese Hamster Ovary cells deficient in the Kennedy phosphatidylcholine biosynthesis pathway

    Get PDF
    The plasmodial CTP:phosphocholine cytidylyltransferase (PfCCT) is a promising antimalarial target, which can be inhibited to exploit the need for increased lipid biosynthesis during the erythrocytic life stage of Plasmodium falciparum. Notable structural and regulatory differences of plasmodial and mammalian CCTs offer the possibility to develop species-specific inhibitors. The aim of this study was to use CHO-MT58 cells expressing a temperature-sensitive mutant CCT for the functional characterization of PfCCT. We show that heterologous expression of wild type PfCCT restores the viability of CHO-MT58 cells at non-permissive (40 degrees C) temperatures, whereas catalytically perturbed or structurally destabilized PfCCT variants fail to provide rescue. Detailed in vitro characterization indicates that the H630N mutation diminishes the catalytic rate constant of PfCCT. The flow cytometry-based rescue assay provides a quantitative readout of the PfCCT function opening the possibility for the functional analysis of PfCCT and the high throughput screening of antimalarial compounds targeting plasmodial CCT

    Highly Sensitive and Rapid Characterization of the Development of Synchronized Blood Stage Malaria Parasites Via Magneto-Optical Hemozoin Quantification.

    Get PDF
    The rotating-crystal magneto-optical diagnostic (RMOD) technique was developed as a sensitive and rapid platform for malaria diagnosis. Herein, we report a detailed in vivo assessment of the synchronized Plasmodium vinckei lentum strain blood-stage infections by the RMOD method and comparing the results to the unsynchronized Plasmodium yoelii 17X-NL (non-lethal) infections. Furthermore, we assess the hemozoin production and clearance dynamics in chloroquine-treated compared to untreated self-resolving infections by RMOD. The findings of the study suggest that the RMOD signal is directly proportional to the hemozoin content and closely follows the actual parasitemia level. The lack of long-term accumulation of hemozoin in peripheral blood implies a dynamic equilibrium between the hemozoin production rate of the parasites and the immune system's clearing mechanism. Using parasites with synchronous blood stage cycle, which resemble human malaria parasite infections with Plasmodium falciparum and Plasmodium vivax, we are demonstrating that the RMOD detects both hemozoin production and clearance rates with high sensitivity and temporal resolution. Thus, RMOD technique offers a quantitative tool to follow the maturation of the malaria parasites even on sub-cycle timescales
    corecore