15 research outputs found

    DUX4c Is Up-Regulated in FSHD. It Induces the MYF5 Protein and Human Myoblast Proliferation

    Get PDF
    Facioscapulohumeral muscular dystrophy (FSHD) is a dominant disease linked to contractions of the D4Z4 repeat array in 4q35. We have previously identified a double homeobox gene (DUX4) within each D4Z4 unit that encodes a transcription factor expressed in FSHD but not control myoblasts. DUX4 and its target genes contribute to the global dysregulation of gene expression observed in FSHD. We have now characterized the homologous DUX4c gene mapped 42 kb centromeric of the D4Z4 repeat array. It encodes a 47-kDa protein with a double homeodomain identical to DUX4 but divergent in the carboxyl-terminal region. DUX4c was detected in primary myoblast extracts by Western blot with a specific antiserum, and was induced upon differentiation. The protein was increased about 2-fold in FSHD versus control myotubes but reached 2-10-fold induction in FSHD muscle biopsies. We have shown by Western blot and by a DNA-binding assay that DUX4c over-expression induced the MYF5 myogenic regulator and its DNA-binding activity. DUX4c might stabilize the MYF5 protein as we detected their interaction by co-immunoprecipitation. In keeping with the known role of Myf5 in myoblast accumulation during mouse muscle regeneration DUX4c over-expression activated proliferation of human primary myoblasts and inhibited their differentiation. Altogether, these results suggested that DUX4c could be involved in muscle regeneration and that changes in its expression could contribute to the FSHD pathology

    Characterization of lactogen receptor-binding site 1 of human prolactin

    Full text link
    peer reviewedProlactin (PRL) binds to two molecules of PRL receptor (PRLR) through two regions referred to as binding sites 1 and 2. Although binding site 1 has been generally assigned to the pocket delimited by helix 1, helix 4, and the second half of loop 1, the residues involved in receptor binding have not yet all been precisely identified. In an earlier alanine-scanning mutational study, we identified three major binding determinants in loop 1 of human PRL (hPRL) (Goffin, V., Norman, M. & Martial, J. A.(1992) Mol. Endocrinol. 6, 1381-1392). Here we focus on the two other regions that form binding site 1, namely helices 1 and 4. Putative binding residues, selected on the basis of a three-dimensional model of hPRL constructed in this laboratory, were mutated to alanine, and recombinant hPRL mutants produced in Escherichia coli were tested for their ability to bind to the PRLR and to stimulate Nb2 cell proliferation. We thus identified nine single mutations (three in helix 1 and six in helix 4) whose effect was to reduce both binding and mitogenic activity by more than half as compared with wild-type hPRL, indicating the functional involvement of the corresponding residues. Adding these to the three binding determinants identified in loop 1, we now propose a complete picture of PRLR-binding site 1 of hPRL. As we earlier hypothesized, the binding site 1 determinants of hPRL differ from those of human growth hormone, a hPRL homolog

    Stabilization of human triosephosphate isomerase by improvement of the stability of individual alpha-helices in dimeric as well as monomeric forms of the protein

    Full text link
    Human triosephosphate isomerase (hTIM) is a dimeric enzyme of identical subunits, adopting the alpha/beta-barrel fold. In a previous work, a monomeric mutant of hTIM was engineered in which Met14 and Arg98, two interface residues, were changed to glutamine. Analysis of equilibrium denaturation of this monomeric mutant, named M14Q/R98Q, revealed that its conformational stability, 2.5kcal/mol, is low as compared to the stability of dimeric hTIM (19.3 kcal/mol). The fact that this value is also lower than the conformational stabilities usually found for monomeric proteins suggests that the hTIM monomers are thermodynamically unstable. In the present work, we attempted to stabilize the M14Q/R98Q mutant by introducing stabilizing mutations in alpha-helices of the protein. Five mutations were proposed, designed to increase alpha-helix propensity by introducing alanines at solvent-exposed sites (Q179A, K193A), to introduce favorable interactions with helix dipoles (Q179D, S105D), or to reduce the conformational entropy of unfolding by introducing proline residues at the "N-cap" position of alpha-helices (A215P). Three replacements (Q179D, K193A, and A215P) were found to increase the stability of the native dimeric hTIM and the monomeric M14Q/R98Q. These results suggest that the monomeric hTIM mutant can be stabilized to a considerable extent by following well-established rules for protein stabilization. A comparison of the stabilizing effect performed by the mutations on the dimeric hTIM and the monomeric M14Q/R98Q allowed us to reinforce a model of equilibrium denaturation proposed for both proteins

    Modular mutagenesis of a TIM-barrel enzyme: the crystal structure of a chimeric E. coli TIM having the eighth beta alpha-unit replaced by the equivalent unit of chicken TIM

    Full text link
    The crystal structure of a hybrid Escherichia coli triosephosphate isomerase (TIM) has been determined at 2.8 A resolution. The hybrid TIM (ETIM8CHI) was constructed by replacing the eighth beta alpha-unit of E. coli TIM with the equivalent unit of chicken TIM. This replacement involves 10 sequence changes. One of the changes concerns the mutation of a buried alanine (Ala232 in strand 8) into a phenylalanine. The ETIM8CHI structure shows that the A232F sequence change can be incorporated by a side-chain rotation of Phe224 (in helix 7). No cavities or strained dihedrals are observed in ETIM8CHI in the region near position 232, which is in agreement with the observation that ETIM8CHI and E.coli TIM have similar stabilities. The largest CA (C-alpha atom) movements, approximately 3 A, are seen for the C-terminal end of helix 8 (associated with the outward rotation of Phe224) and for the residues in the loop after helix 1 (associated with sequence changes in helix 8). From the structure it is not clear why the kcat of ETIM8CHI is 10 times lower than in wild type E.coli TIM

    Three hTIM Mutants that Provide New Insights on why TIM is a Dimer

    Get PDF
    Human triosephosphate isomerase (hTIM), a dimeric enzyme, was altered by site-directed mutagenesis in order to determine whether it can be dissociated into monomers. Two hTIM mutants were produced, in which a glutamine residue was substituted for either Met14 or Arg98, both of which are interface residues. These substitutions strongly interfere with TIM subunit association, since these mutant TIMs appear to exist as compact monomers in dynamic equilibrium with dimers. In kinetic studies, the M14Q mutant exhibits significant catalytic activity, while the R98Q enzyme is inactive. The M14Q enzyme is nevertheless much less active than unmutated hTIM. Moreover, its specific activity is concentration dependent, suggesting a dissociation process in which the monomers are inactive. In order to determine the conformational stability of the wild-type and mutant hTIMs, unfolding of all three enzymes was monitored by circular dichroism and tryptophan fluorescence spectroscopy. In each case, protein stability is concentration dependent, and the unfolding reaction is compatible with a two-state model involving the native dimer and unfolded monomers. The conformational stability of hTIM, as estimated according to this model, is 19.3(±0.4) kcal/mol. The M14Q and R98Q replacements significantly reduce enzyme stability, since the free energies of unfolding are 13.8 and 13.5(±0.3) kcal/mol respectively, for the mutants. A third mutant, in which the M14Q and R98Q replacements are cumulated, behaves like a monomer. The stability of this mutant is not concentration-dependent, and the unfolding reaction is assigned to a transition from a folded monomer to an unfolded monomer. The conformational stability of this double mutant is estimated at 2.5(±0.1) kcal/mol. All these data combined suggest that TIM monomers are thermodynamically unstable. This might explain why TIM occurs only as a dimer.

    Crystal structure of recombinant triosephosphate isomerase from Bacillus stearothermophilus. An analysis of potential thermostability factors in six isomerases with known three-dimensional structures points to the importance of hydrophobic interactions

    Full text link
    peer reviewedThe structure of the thermostable triosephosphate isomerase (TIM) from Bacillus stearothermophilus complexed with the competitive inhibitor 2-phosphoglycolate was determined by X-ray crystallography to a resolution of 2.8 A. The structure was solved by molecular replacement using XPLOR. Twofold averaging and solvent flattening was applied to improve the quality of the map. Active sites in both the subunits are occupied by the inhibitor and the flexible loop adopts the "closed" conformation in either subunit. The crystallographic R-factor is 17.6% with good geometry. The two subunits have an RMS deviation of 0.29 A for 248 C alpha atoms and have average temperature factors of 18.9 and 15.9 A2, respectively. In both subunits, the active site Lys 10 adopts an unusual phi, psi combination. A comparison between the six known thermophilic and mesophilic TIM structures was conducted in order to understand the higher stability of B. stearothermophilus TIM. Although the ratio Arg/(Arg+Lys) is higher in B. stearothermophilus TIM, the structure comparisons do not directly correlate this higher ratio to the better stability of the B. stearothermophilus enzyme. A higher number of prolines contributes to the higher stability of B. stearothermophilus TIM. Analysis of the known TIM sequences points out that the replacement of a structurally crucial asparagine by a histidine at the interface of monomers, thus avoiding the risk of deamidation and thereby introducing a negative charge at the interface, may be one of the factors for adaptability at higher temperatures in the TIM family. Analysis of buried cavities and the areas lining these cavities also contributes to the greater thermal stability of the B. stearothermophilus enzyme. However, the most outstanding result of the structure comparisons appears to point to the hydrophobic stabilization of dimer formation by burying the largest amount of hydrophobic surface area in B. stearothermophilus TIM compared to all five other known TIM structures

    Cloning and Overexpression of the Triosephosphate Isomerase Genes from Psychrophilic and Thermophilic Bacteria. Structural Comparison of the Predicted Protein Sequences

    No full text
    We focused on the temperature adaptation of triosephosphate isomerase (TIM; E.C. 5.3.1.1.) by comparing the structure of TIMs isolated from bacterial organisms living in either cold or hot environments. The TIM gene from psychrophilic bacteria Moraxella sp. TA137 was cloned and its nucleotide sequence determined. Its deduced amino acid sequence revealed 34% identity with the thermophilic bacteria Bacillus stearothermophilus TIM. Expression vectors were constructed and recombinant Moraxella TA137 and Bacillus stearothermophilus TIMs were overproduced and purified to homogeneity. Recombinant TIM inactivation constants (Ki), measured at various temperatures, compared to those of the mesophilic Escherichia coli recombinant TIM clearly show that Moraxella TA137 and B. stearothermophilus TIMs have respectively psychrophilic and thermophilic characteristics. To try to elucidate the structure-thermolability and structure-thermostability relationship, factors affecting the overall stability of these two TIMs were examined, based on the alignment with the mesophilic chicken TIM, the three-dimensional structure of which is already known. From this comparison, it appears that the adaptability of TIM to high temperature is favored by better stabilizing residues for the helix dipole as well as better helix-forming residues whereas the adaptability of TIM to low temperature seems to reside in the nature of helix-capping residues.
    corecore