40 research outputs found

    Pattern of DAP12 Expression in Leukocytes from Both Healthy and Systemic Lupus Erythematosus Patients

    Get PDF
    DAP12 is an ITAM-bearing transmembrane adaptor originally identified on the surface of Natural Killer cells. A broad expression among other immune cells was later found in myeloid and lymphoid cells. However, data on DAP12 expression pattern rely only on immunoblot and microarray analysis. Here, we describe the generation and the characterization of an anti-DAP12 monoclonal antibody. Using this novel reagent, we show that DAP12 expression is restricted to innate immune cells in basal condition. Since a decreased expression of DAP12 has been suggested in NK cells of systemic lupus erythematosus patients, we have further investigated the NK cell receptor repertoire and leukocyte expression of DAP12 in these patients and no major changes were detectable when compared to controls

    Coordination of activating and inhibitory signals in natural killer cells.

    No full text
    NK cells are equipped with multiple activating and inhibitory cell surface receptors whose engagement regulate NK cell effector function (i.e. cytotoxicity as well as chemokine and cytokine production). Several components (adaptors, effector molecules) that participate to NK cell signalling pathways have been described. Yet, the spatio-temporal organisation of these pathways is still poorly understood. In addition, the mechanisms that integrate several simultaneous input signals in NK cells remain to be elucidated

    Natural killer cells in human autoimmune diseases

    No full text
    Natural killer (NK) cells have been implicated in tumour surveillance and in the early control of several microbial infections. In autoimmune disease their involvement in these processes has been evaluated in animal models, with conflicting results. Both a disease-controlling and a disease-promoting role have been suggested. In human autoimmune disease only a few studies, mainly descriptive, have demonstrated qualitative and quantitative modification of NK cells. These changes were observed on blood- or tissue-infiltrating NK cells. Taken together with our expanding knowledge of the genetical variability of NK cell receptors and NK cell physiology, these findings pave the way for the dissection of the role of NK cells in human autoimmune diseases. NK cells may be directly involved in these diseases through their potential autoreactivity or through their interaction with dendritic cells, macrophages or T lymphocytes, thereby inducing excessive inflammation or favouring the adaptive autoimmune response. Thus, NK cells may be implicated in the onset, the maintenance or the progression of autoimmune diseases. Some reports also suggest the involvement of NK cells in the treatment of human autoimmune disease by biotherapies. All these observations suggest that NK cells are involved in the complex processes of autoimmune diseases. Nevertheless, further careful analysis of NK cells at different steps of these diseases, in different tissues and through combined genetical and functional studies will contribute to a better understanding of their role in autoimmune diseases. This knowledge might allow the development of new therapeutic strategies based on NK cells for the treatment of some autoimmune diseases

    Innate lymphoid cell recovery and occurrence of GvHD after hematopoietic stem cell transplantation

    No full text
    Lymphocytes are essential for microbial immunity, tumor surveillance, and tissue homeostasis. However, the in vivo development and function of helper-like innate lymphoid cells (ILCs) in humans remain much less well understood than those of T, B, and NK cells. We monitored hematopoietic stem cell transplantation (HSCT) to determine the kinetics of ILC development in both children and adults. It was found that, unlike NK cells, helper-like ILCs recovered slowly, mirroring the pattern observed for T cells, with normalization achieved at 1 year. The type of graft and the proportion of CD34+ cells in the graft did not significantly affect ILC reconstitution. As HSCT is often complicated by acute or chronic graft-versus-host disease (GVHD), the potential role of ILC subsets in maintaining tissue integrity in these conditions was also analyzed. It was found that GVHD was associated with lower levels of activated and gut-homing NKp44+ ILCP, consistent with a non-redundant role of this ILC subset in preventing this life-threatening disorder in lymphopenic conditions.Depto. de InmunologĂ­a, OftalmologĂ­a y ORLFac. de MedicinaTRUEpu

    Molecular Basis of the Recruitment of the SH2 Domain-containing Inositol 5-Phosphatases SHIP1 and SHIP2 by FcÎłRIIB

    No full text
    International audienceFcgammaRIIB are single-chain low affinity receptors for IgG that negatively regulate immunoreceptor tyrosine-based activation motif-dependent cell activation. They bear one immunoreceptor tyrosine-based inhibition motif (ITIM) that becomes tyrosyl-phosphorylated upon coaggregation of FcgammaRIIB with immunoreceptor tyrosine-based activation motif-bearing receptors and that recruits SH2 domain-containing inositol 5-phosphatases (SHIPs) in vivo. Synthetic FcgammaRIIB ITIM phosphopeptides, however, also bind SH2 domain-containing protein-tyrosine phosphatases (SHPs) in vitro. To identify SHIP-binding sites, we exchanged residues between the FcgammaRIIB ITIM and the N-terminal ITIM of a killer cell Ig-like receptor that does not bind SHIPs. Loss of function and gain of function substitutions identified the Y+2 leucine, in the FcgammaRIIB ITIM, as determining the binding of both SHIP1 and SHIP2, but not the binding of SHP-1 or SHP-2. Conversely, the Y-2 isoleucine that determines the in vitro binding of SHP-1 and SHP-2 affected neither the binding nor the recruitment of SHIP1 or SHIP2. One hydrophobic residue, in the ITIM of FcgammaRIIB therefore determines the affinity for SHIPs. This residue is symmetrical to the hydrophobic residue that determines the affinity of all ITIMs for SHPs. It defines a SHIP-binding site, distinct from a SHP-binding site, that enables FcgammaRIIB to recruit SHIP1 and SHIP2 and that is preferentially used in vivo

    Granulocyte Macrophage Colony-Stimulating Factor-Specific Autoantibodies and Cerebral Nocardia With Pulmonary Alveolar Proteinosis

    No full text
    International audienceAbstract In this study, we report the history of a 40-year-old man with a primary cerebral abscess caused by Nocardia abscessus that led to the discovery of autoimmune pulmonary alveolar lipoproteinosis (anti-granulocyte-macrophage colony-stimulating factor [GM-CSF] autoantibodies). Anti-GM-CSF autoantibodies promote immunodeficiency and should be monitored to prevent opportunistic and disseminated infections and to diagnose asymptomatic pulmonary alveolar lipoproteinosis

    Homophilic interaction of NTBA, a member of the CD2 molecular family: induction of cytotoxicity and cytokine release in human NK cells

    No full text
    International audienceNK-T-B antigen (NTBA) is a CD2 family member that functions as a coreceptor in human NK cell activation. Several receptor/ligand interactions occur between different members of this molecular family. In this study, in order to identify the natural ligand of NTBA, we produced a chimeric protein formed by the NTBA extracellular region fused with the Fc portion of human IgG1 (termed NTBA-Fc*). NTBA-Fc* specifically binds to NTBA cell transfectants but not to cells transfected with other CD2 family members including CD2, CD48, CD84, CD150, CD229, and CD244. Moreover, NTBA-Fc* also binds to NTBA(+) but not to NTBA(-) T cell lines. Enzyme-linked immunosorbent assays, plasmon resonance analysis, as well as NTBA-Fc*-mediated down-regulation of NTBA surface expression further confirmed the occurrence of NTBA/NTBA homophilic interaction. Functionally, in NK cells, NTBA-Fc* promoted a strong production of IFN-gamma and TNF-alpha. Moreover, NTBA-transfected targets displayed increased susceptibility to NK-mediated killing as compared to untransfected cells and this effect was specifically inhibited by anti-NTBA mAb. Altogether our data indicate that NTBA is characterized by self recognition
    corecore