2 research outputs found

    High performance anticorrosive epoxy paints pigmented with zinc molybdenum phosphate

    Get PDF
    Zinc molybdenum phosphate belongs to the so called second generation phosphate pigments and is claimed to have equal or greater anticorrosive properties than chromates and better than zinc phosphate alone. Little Information is available in the literature about its anticorrosive performance. The aim of this research was to stucfy the anticorrosive performance of zinc molybdenum phosphate in solvent borne epoxy paints employing two anticorrosive pigment loadings. The effect of incorporating zinc oxide as complemetary pigment was also studied SAE 1010 Steel ponéis were primed and coated with three different paint systems containing the anticorrosive paint and this paint plus a sealer cmd/or a topcoat. The anticorrosive efftciency of the different paint systems was assessed by accelerated tests (salí spray, humidity and accelerated weathering). Electrochemical measurements were done employing the anticorrosive paints alone. Results showed that the highest anticorrosive effect was obtained employing 30% of zinc molybdenum phosphate. Polarization measurements showed that the anoche film formed on Steel blocked the active sites for oxygen reduction. The incorporation of zinc oxide to pigment formula was detrimental due to its high water absorption and to the fact that it reduced zinc molybdenum phosphate solubility by the common ion effect. Polarization curves of pigments mixtures could be used as a guideline to precüct the anticorrosive coating performance in accelerated and electrochemical tests. However, the final decisión on pigment selection musí be taken on the basis of accelerated triáis

    Performance of coated steel systems exposed to different media: Part I. Painted galvanized steel

    Get PDF
    The performance of different pre-treated galvanized steel/primer/topcoat paint systems applied on hot-dip galvanized steel sheets has been studied. Each panel was pre-treated with 5% Fe(NO3)3+15% H 3PO3 solution. After this step, the panels were coated either with acrylic (AC), alkyd (AK), vinyl (VL), epoxy base-solvent (ES) or epoxy-waterborne (EW) based corrosion-inhibiting primer using zinc molybdenum phosphate as anticorrosive pigment, and with commercially available alkyd topcoat paint. Experimental behavior of these panels under standardized salt spray chamber exposure or continuous immersion in 0.5M NaCl, 0.5M Na 2SO4 or 0.25M NaCl+0.25M Na2SO4 solutions was evaluated through periodical visual inspection (blistering and rusting degrees) and EIS measurements (corrosion evolution). Initial (dry) and final (wet) paint adhesion was also determined. EIS data has been interpreted and discussed in terms of the time dependence of the electrical (paint coating) and electrochemical (steel substrate) parameters associated with interfacial processes describing the metal/paint system deterioration. According to the electrochemical properties, visual inspection and standardized tests results, the painting systems designated as AK, ES, EW, and VL presented the best overall anticorrosive behavior under immersion conditions, but all samples failed when exposed to the salt spray chamber. System AC behaved very well in 0.25M NaCl+0.25M Na2SO4 but failed in the other media. Adhesion changes outside the tested areas showed that under immersion conditions there was lateral diffusion. Good correlation between standardized and electrochemical tests results was also obtained.Fil: del Amo, Delia Beatriz. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Tecnología de Pinturas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones en Tecnología de Pinturas; ArgentinaFil: Véleva, L.. Centro de Investigación y de Estudios Avanzados; MéxicoFil: Di Sarli, Alejandro Ramón. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Tecnología de Pinturas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones en Tecnología de Pinturas; ArgentinaFil: Elsner, Cecilia Ines. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Tecnología de Pinturas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones en Tecnología de Pinturas; Argentin
    corecore