32 research outputs found

    Subunit Asa1 spans all the peripheral stalk of the mitochondrial ATP synthase of the chlorophycean alga Polytomella sp.

    Full text link
    peer reviewedMitochondrial F1FO-ATP synthase of chlorophycean algae is dimeric. It contains eight orthodox subunits (alpha, beta, gamma, delta, epsilon, OSCP, a and c) and nine atypical subunits (Asa1 to 9). These subunits build the peripheral stalk of the enzyme and stabilize its dimeric structure. The location of the 66.1kDa subunit Asa1 has been debated. On one hand, it was found in a transient subcomplex that contained membrane-bound subunits Asa1/Asa3/Asa5/Asa8/a (Atp6)/c (Atp9). On the other hand, Asa1 was proposed to form the bulky structure of the peripheral stalk that contacts the OSCP subunit in the F1 sector. Here, we overexpressed and purified the recombinant proteins Asa1 and OSCP and explored their interactions in vitro, using immunochemical techniques and affinity chromatography. Asa1 and OSCP interact strongly, and the carboxy-terminal half of OSCP seems to be instrumental for this association. In addition, the algal ATP synthase was partially dissociated at relatively high detergent concentrations, and an Asa1/Asa3/Asa5/Asa8/a/c10 subcomplex was identified. Furthermore, Far-Western analysis suggests an Asa1-Asa8 interaction. Based on these results, a model is proposed in which Asa1 spans the whole peripheral arm of the enzyme, from a region close to the matrix-exposed side of the mitochondrial inner membrane to the F1 region where OSCP is located. 3D models show elongated, helix-rich structures for chlorophycean Asa1 subunits. Asa1 subunit probably plays a scaffolding role in the peripheral stalk analogous to the one of subunit b in orthodox mitochondrial enzymes

    Dissecting the peripheral stalk of the mitochondrial ATP synthase of chlorophycean algae.

    Full text link
    peer reviewedThe algae Chlamydomonas reinhardtii and Polytomella sp., a green and a colorless member of the chlorophycean lineage respectively, exhibit a highly-stable dimeric mitochondrial F1Fo-ATP synthase (complex V), with a molecular mass of 1600kDa. Polytomella, lacking both chloroplasts and a cell wall, has greatly facilitated the purification of the algal ATP-synthase. Each monomer of the enzyme has 17 polypeptides, eight of which are the conserved, main functional components, and nine polypeptides (Asa1 to Asa9) unique to chlorophycean algae. These atypical subunits form the two robust peripheral stalks observed in the highly-stable dimer of the algal ATP synthase in several electron-microscopy studies. The topological disposition of the components of the enzyme has been addressed with cross-linking experiments in the isolated complex; generation of subcomplexes by limited dissociation of complex V; detection of subunit-subunit interactions using recombinant subunits; in vitro reconstitution of subcomplexes; silencing of the expression of Asa subunits; and modeling of the overall structural features of the complex by EM image reconstruction. Here, we report that the amphipathic polymer Amphipol A8-35 partially dissociates the enzyme, giving rise to two discrete dimeric subcomplexes, whose compositions were characterized. An updated model for the topological disposition of the 17 polypeptides that constitute the algal enzyme is suggested. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi

    The polypeptides COX2A and COX2B are essential components of the mitochondrial cytochrome c oxidase of Toxoplasma gondii

    Get PDF
    AbstractTwo genes encoding cytochrome c oxidase subunits, Cox2a and Cox2b, are present in the nuclear genomes of apicomplexan parasites and show sequence similarity to corresponding genes in chlorophycean algae. We explored the presence of COX2A and COX2B subunits in the cytochrome c oxidase of Toxoplasma gondii. Antibodies were raised against a synthetic peptide containing a 14-residue fragment of the COX2A polypeptide and against a hexa-histidine-tagged recombinant COX2B protein. Two distinct immunochemical stainings localized the COX2A and COX2B proteins in the parasite's mitochondria. A mitochondria-enriched fraction exhibited cyanide-sensitive oxygen uptake in the presence of succinate. T. gondii mitochondria were solubilized and subjected to Blue Native Electrophoresis followed by second dimension electrophoresis. Selected protein spots from the 2D gels were subjected to mass spectrometry analysis and polypeptides of mitochondrial complexes III, IV and V were identified. Subunits COX2A and COX2B were detected immunochemically and found to co-migrate with complex IV; therefore, they are subunits of the parasite's cytochrome c oxidase. The apparent molecular mass of the T. gondii mature COX2A subunit differs from that of the chlorophycean alga Polytomella sp. The data suggest that during its biogenesis, the mitochondrial targeting sequence of the apicomplexan COX2A precursor protein may be processed differently than the one from its algal counterpart

    Familial hypercholesterolaemia in children and adolescents from 48 countries: a cross-sectional study

    Get PDF
    Background: Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. Methods: For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. Findings: Of 63 093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11 476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11 848 individuals. Median age at registry entry was 9·6 years (IQR 5·8-13·2). 10 099 (89·9%) of 11 235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10 428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05-6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50-75% of children and adolescents with familial hypercholesterolaemia not being identified. Interpretation: Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life

    In Yarrowia lipolytica mitochondria, the alternative NADH dehydrogenase interacts specifically with the cytochrome complexes of the classic respiratory pathway

    Get PDF
    AbstractIn Yarrowia lipolytica, mitochondria contain a branched respiratory chain constituted by the classic complexes I, II, III and IV, plus an alternative external NADH dehydrogenase (NDH2e) and an alternative oxidase (AOX). The alternative enzymes are peripheral, single-subunit oxido-reductases that do not pump protons. Thus, the oxidation of NADH via NDH2e-ubiquinone-AOX would not contribute to the proton-motive force. The futile oxidation of NADH may be prevented if either NDH2e or AOX bind to the classic complexes, channelling electrons. By oxymetry, it was observed that the electrons from complex I reached both cytochrome oxidase and AOX. In contrast, NDH2e-derived electrons were specifically channelled/directed to the cytochrome complexes. In addition, the presence of respiratory supercomplexes plus the interaction of NDH2e with these complexes was evaluated using blue native PAGE, clear native PAGE, in-gel activities, immunoblotting, mass spectrometry, and N-terminal sequencing. NDH2e (but not the redirected matrix NDH2i from a mutant strain, Δnubm) was detected in association with the cytochromic pathway; this interaction seems to be strong, as it was not disrupted by laurylmaltoside. The association of NDH2e to complex IV was also suggested when both enzymes coeluted from an ion exchange chromatography column. In Y. lipolytica mitochondria the cytochrome complexes probably associate into supercomplexes; those were assigned as follows: I–III2, I–IV, I–III2–IV4, III2–IV, III2–IV2, IV2 and V2. The molecular masses of all the complexes and putative supercomplexes detected in Y. lipolytica were estimated by comparison with the bovine mitochondrial complexes. To our knowledge, this is the first evidence of supercomplex formation in Y. lipolytica mitochondria and also, the first description of a specific association between an alternative NADH dehydrogenase and the classic cytochrome pathway

    Aislamiento de algunas subunidades que integran el brazo periférico de la ATP sintasa mitocondrial de Polytomella sp. y estudio de sus interacciones.

    Full text link
    La ATP sintasa mitocondrial de las algas clorofíceas ha perdido una serie de subunidades clásicas que están involucradas en la formación del cuello lateral (estator) de la enzima y en la dimerización de la misma. En compensación, ha adquirido 9 subunidades novedosas, de origen evolutivo desconocido, que han sido llamadas ASA1 a ASA9. Estas subunidades ASA solamente están presentes en el grupo de las algas clorofíceas y no se encuentran en otras algas cercanamente relacionadas, como las algas verdes del linaje de las ulvofíceas, de las prasinofíceas o de las trebuxiofíceas. Experimentos de disociación de la enzima y tratamiento con agentes entrecruzadores llevaron a la propuesta de un modelo estructural de esta ATP sintasa, donde se propone que las subunidades ASA1 a 9 participan en la estructura del estator periférico y en la formación de un dímero estable. En el presente trabajo se desea abordar un estudio más detallado de las subunidades ASA, para conocer acerca de las interacciones que establecen entre ellas y como contribuyen a la formación del brazo periférico de la enzima. La estrategia experimental parte de la clonación de los genes de las subunidades en vectores de expresión en bacteria, la sobre-expresión de las subunidades recombinantes, su purificación y ensayos de interacción mediante geles azules nativos e inmunoréplicas tipo Far Western. Los resultados indican una fuerte interacción entre las subunidades ASA4 y ASA7 que involucra el extremo carboxilo terminal de la subunidad ASA4. Los estudios de inmunoréplica indican interacciones entre las subunidades ASA4-ASA7 y ASA4-ASA2

    Cox2A/Cox2B subunit interaction in Polytomella sp. cytochrome c oxidase: role of the Cox2B subunit extension

    Full text link
    Subunit II of cytochrome c oxidase (Cox2) is usually encoded in the mitochondrial genome, synthesized in the organelle, inserted co-translationally into the inner mitochondrial membrane, and assembled into the respiratory complex. In chlorophycean algae however, the cox2 gene was split into the cox2a and cox2b genes, and in some algal species like Chlamydomonas reinhardtii and Polytomella sp. both fragmented genes migrated to the nucleus. The corresponding Cox2A and Cox2B subunits are imported into mitochondria forming a heterodimeric Cox2 subunit. When comparing the sequences of chlorophycean Cox2Aand Cox2B proteins with orthodox Cox2 subunits, a C-terminal extension in Cox2A and an N-terminal extension in Cox2B were identified. It was proposed that these extensions favor the Cox2A/Cox2B interaction. In vitro studies carried out in this work suggest that the removal of the Cox2B extension only partially affects binding of Cox2B to Cox2A.We conclude that this extension is dispensable, but when present it weakly reinforces the Cox2A/Cox2B interaction

    Dissecting the peripheral arm of the mitocondrial ATP synthase of chlorophycean algae.

    Full text link
    Mitochondrial F 1 Fo-ATP synthase (complex V) makes ATP using the electrochemical proton gradient generated by the respiratory chain. It is an oligomeric complex embedded in the inner mitochondrial membrane that works like a rotary motor. Chlamydomonas reinhardtii and Polytomella sp., two members of the chlorophycean lineage of unicellular green algae, have a highly-stable dimeric mitochondrial F 1 Fo-ATP synthase, with an estimated molecular mass of 1600 kDa. The chlorophycean enzyme contains the eight conserved polypeptides present in the vast majority of eukaryotes that represent the main components of the proton-driven rotary motor and the catalytic sector of the enzyme: subunits alpha, beta, gamma, delta, epsilon, a (ATP6), c (ATP9), and OSCP. Nevertheless, and in sharp contrast with other mitochondrial F 1 Fo-ATP synthases like the one from beef heart, the algal enzyme seems to lack several classic components: the subunits of the peripheral stalk b, d, f, A6L, and F6, the subunits responsible for dimer formation e and g, and the regulatory polypeptide IF 1 . Instead, the algal enzyme contains nine subunits with molecular masses ranging from 8 to 60 kDa named ASA1 to ASA9 (for ATP Synthase Associated proteins). These polypeptides have no clear orthologs in the databases and seem to be unique to chlorophycean algae. The nine ASA subunits build up a highly-robust peripheral stalk with a unique architecture, as observed on single-particle electron microscopy (EM) images. Our group has found of interest to gain further insights on the close-neighbor relationships between the ASA subunits and their interactions with some of the classical subunits. We have therefore explored with some detail the topological disposition of the components of the algal mitochondrial ATP synthase using different experimental approaches: detection of subunit-subunit interactions based on cross-linking experiments, the yeast two hybrid system or reconstitution with recombinant subunits; generation of sub-complexes after partial dissociation of the dimeric ATP synthase; inference of subunit stoichiometry based on labelling of cysteine residues and modelling of the overall structural features of the complex from small-angle X ray scattering data and EM image reconstruction. Based on the results obtained from these diverse experimental strategies, we suggest a refined model for the topological disposition of the 17 polypeptides that constitute the algal mitochondrial ATP synthase
    corecore