4 research outputs found

    Estudio del desarrollo de la infección viroidal en mutantes never ripe de tomate

    Full text link
    [ES] En respuesta a los ataques por parte de patógenos, así como a las diferentes agresiones ambientales a los que se ven sometidas las plantas, éstas sintetizan multitud de compuestos, que incluyen proteínas de defensa y una gran variedad de metabolitos secundarios que ayudan a la planta a adaptarse y superar la situación de estrés. Esta respuesta viene mediada por un número reducido de moléculas señalizadoras, entre las que destacan el ácido salicílico, el ácido jasmónico y el etileno. El grupo de trabajo dirigido por el Dr. J. Mª Bellés, donde se realizará este trabajo, está realizando estudios dirigidos a elucidar tanto la participación de estas moléculas señal como la implicación de compuestos del metabolismo secundario en la interacción de plantas de tomate con distintos patógenos. Para investigar el papel del etileno en la respuesta de plantas infectadas por el viroide de la exocortis de los cítricos (CEVd), se utilizará como material biológico mutantes de tomate Never ripe (Nr), que presentan insensibilidad a etileno, por lo que muestran fenotipos anómalos en la maduración de sus frutos y en su respuesta a patógenos. Disponemos de plantas Never ripe de los cultivares Rutgers y Pearson , así como sus correspondientes líneas parentales (accesiones LA3001, LA0162, LA1090 y LA0012, https://tgrc.ucdavis.edu). Se caracterizará fenotípicamente los mutantes de etileno Nr frente a la infección por CEVd, mediante el estudio de la sintomatología y la acumulación del patógeno. Se caracterizará molecularmente mediante el análisis de la expresión de genes implicados en las rutas de señalización defensiva y en la biosíntesis de etileno, así como el estudio del estrés ribosomal causado por este patógeno. Por último, se llevará a cabo una caracterización química, mediante el análisis de los niveles de etileno que refleje el estado bioquímico de estos mutantes como consecuencia de la infección viroidal. Este proyecto contribuirá al conocimiento del sistema defensivo de las plantas frente a patógenos, tanto en sus aspectos de señalización como en los que se refieren a los componentes de la respuesta final de la planta, con vistas a su posible aplicación a la obtención de plantas más resistentes mediante técnicas de biología molecular.[EN] To study the role of ethylene in the defensive response of tomato plants to the citrus exocortis viroid (CEVd), tomato plants from Rutgers and Pearson cultivars and their ethylene insensitive mutants Never rie (Nr) were infected with CEVd. Both cultivars and their corresponding mutants developed several symptoms including bunchiness and epinasty of the leaves, marked growth retardation, stunting and necrosis at 3 weeks post inoculation. Symptoms were more severe in Nr mutants than their corresponding control. As the infection developed, an accumulation of pathogen-related proteins and viroid transcript was observed. The induction of genes related to defensive signalling like PR1 was quantified. The expression of genes related to ethylene biosynthesis (1- aminocyclopropane-1-carboxylic acid oxidase (ACO) and 1-aminocy- clopropane-1- carboxylate synthase (ACS)) was also quantified, as well as ethylene levels emitted by infected and control plants. Results show an induction of these genes caused by an infection with CEVd. However, the development of symptoms correlates with ethylene levels emitted and not with the accumulation of viroid transcript. As a final assay, alterations in the translation machinery caused by CEVd was studied as a new aspect of viroid pathogenesis. A higher expression level of the ribosomal stress mediator SlNAC082 and an accumulation of non-mature rRNA was detected in CEVd-infected tomato leaves. These results indicate the induction of ribosomal stress in an infection with CEVd.[CA] Per a investigar el paper de l'etilé en la resposta de les plantes de tomaca infectades pel viroid de l’exocortis dels citrics (CEVd), plantes de tomaca de les varietats Rutgers i Pearson i mutants insensibles a etilé Never ripe (Nr) van ser infectats amb el CEVd. Les dues varietats i també els mutants van desenvolupar diversos símptomes incloent la reducció i arrugamiento de les fulles, nanisme, epinastia pronunciada i necrosi a les 3 setmanes post-inoculació, encara que els símptomes no van ser tan severs en plantes Rutgers i Pearson com en els mutants Nr. A mesura que va avançar la malaltia es va produir l'acumulació de proteïnes relacionades amb la patogénesis denominaes PR i transcrit de CEVd. A més, es va quantificar la inducció de gens implicats en les rutes de senyalització defensiva com PR1, així com, l'expressió del gen que codifica l'enzim 1- aminociclopropano-1-carboxilato sintasa (ACS) i la 1-aminociclopropano-1-carboxilato oxidasa (ACO), enzims implicats en la ruta de biosíntesi de l'etilé. D'altra banda, es van analitzar els nivells d'etilé emesos per les fulles de les plantes infectades i dels corresponents controls. Els resultats obtinguts suggereixen que la infecció pel viroid indueix l'expressió d'aquestos gens. No obstant això, els símptomes produïts per la infecció amb CEVd semblen dependre dels nivells d'etilé emesos i no de l'acumulació del viroid. Finalment, es van estudiar les alteracions causades pel CEVd en la maquinària de traducció en plantes de tomaca en un nou aspecte de la patogénesi dels viroids. Es va detectar un major nivell d'expressió del mediador d'estrés ribosòmic NAC082 en les fulles de tomaca infectades amb CEVd. Estos resultats podrán permetre dilucidar els factors implicats en l'augment de l'estrés ribosomal per una infecció amb el CEVd. Els resultats obtinguts en este projecte aumenten el coneixement del sistema defensiu de les plantes enfront de patògens, tant en els aspectes de senyalització com en els components de la resposta final de la planta, tot aixó amb l’objetiu últim d’obtenir plantes més resistents a differents patógenes.Vázquez Prol, F. (2020). Estudio del desarrollo de la infección viroidal en mutantes never ripe de tomate. http://hdl.handle.net/10251/136734TFG

    Ethylene is Involved in Symptom Development and Ribosomal Stress of Tomato Plants upon Citrus Exocortis Viroid Infection

    Full text link
    [EN] Citrus exocortis viroid (CEVd) is known to cause different symptoms in citrus trees, and its mechanism of infection has been studied in tomato as an experimental host, producing ribosomal stress on these plants. Some of the symptoms caused by CEVd in tomato plants resemble those produced by the phytohormone ethylene. The present study is focused on elucidating the relationship between CEVd infection and ethylene on disease development. To this purpose, the ethylene insensitive Never ripe (Nr) tomato mutants were infected with CEVd, and several aspects such as susceptibility to infection, defensive response, ethylene biosynthesis and ribosomal stress were studied. Phenotypic characterization revealed higher susceptibility to CEVd in these mutants, which correlated with higher expression levels of both defense and ethylene biosynthesis genes, as well as the ribosomal stress marker SlNAC082. In addition, Northern blotting revealed compromised ribosome biogenesis in all CEVd infected plants, particularly in Nr mutants. Our results indicate a higher ethylene biosynthesis in Nr mutants and suggest an important role of this phytohormone in disease development and ribosomal stress caused by viroid infection.Vázquez Prol, F.; López-Gresa, MP.; Rodrigo Bravo, I.; Belles Albert, JM.; Lisón, P. (2020). Ethylene is Involved in Symptom Development and Ribosomal Stress of Tomato Plants upon Citrus Exocortis Viroid Infection. Plants. 9(5):1-15. https://doi.org/10.3390/plants9050582S11595Flores, R., Hernández, C., Alba, A. E. M. de, Daròs, J.-A., & Serio, F. D. (2005). Viroids and Viroid-Host Interactions. Annual Review of Phytopathology, 43(1), 117-139. doi:10.1146/annurev.phyto.43.040204.140243Adkar‐Purushothama, C. R., & Perreault, J. (2019). Current overview on viroid–host interactions. WIREs RNA, 11(2). doi:10.1002/wrna.1570Di Serio, F., Flores, R., Verhoeven, J. T. J., Li, S.-F., Pallás, V., Randles, J. W., … Owens, R. A. (2014). Current status of viroid taxonomy. Archives of Virology, 159(12), 3467-3478. doi:10.1007/s00705-014-2200-6Verhoeven, J. th. j., Jansen, C. C. C., Willemen, T. M., Kox, L. F. F., Owens, R. A., & Roenhorst, J. W. (2004). Natural infections of tomato by Citrus exocortis viroid, Columnea latent viroid, Potato spindle tuber viroid and Tomato chlorotic dwarf viroid. European Journal of Plant Pathology, 110(8), 823-831. doi:10.1007/s10658-004-2493-5López-Gresa, M. P., Lisón, P., Yenush, L., Conejero, V., Rodrigo, I., & Bellés, J. M. (2016). Salicylic Acid Is Involved in the Basal Resistance of Tomato Plants to Citrus Exocortis Viroid and Tomato Spotted Wilt Virus. PLOS ONE, 11(11), e0166938. doi:10.1371/journal.pone.0166938Wang, Y., Wu, J., Qiu, Y., Atta, S., Zhou, C., & Cao, M. (2019). Global Transcriptomic Analysis Reveals Insights into the Response of ‘Etrog’ Citron (Citrus medica L.) to Citrus Exocortis Viroid Infection. Viruses, 11(5), 453. doi:10.3390/v11050453Jia, C., Zhang, L., Liu, L., Wang, J., Li, C., & Wang, Q. (2013). Multiple phytohormone signalling pathways modulate susceptibility of tomato plants to Alternaria alternata f. sp. lycopersici. Journal of Experimental Botany, 64(2), 637-650. doi:10.1093/jxb/ers360Van Loon, L. C., Geraats, B. P. J., & Linthorst, H. J. M. (2006). Ethylene as a modulator of disease resistance in plants. Trends in Plant Science, 11(4), 184-191. doi:10.1016/j.tplants.2006.02.005Bellés, J. M., & Conejero, V. (1989). Ethylene Mediation of the Viroid-Like Syndrome Induced by Ag+Ions inGynura aurantiacaDC Plants. Journal of Phytopathology, 124(4), 275-284. doi:10.1111/j.1439-0434.1989.tb04924.xDubois, M., Van den Broeck, L., & Inzé, D. (2018). The Pivotal Role of Ethylene in Plant Growth. Trends in Plant Science, 23(4), 311-323. doi:10.1016/j.tplants.2018.01.003Yang, S. F., & Hoffman, N. E. (1984). Ethylene Biosynthesis and its Regulation in Higher Plants. Annual Review of Plant Physiology, 35(1), 155-189. doi:10.1146/annurev.pp.35.060184.001103Wang, K. L.-C., Li, H., & Ecker, J. R. (2002). Ethylene Biosynthesis and Signaling Networks. The Plant Cell, 14(suppl 1), S131-S151. doi:10.1105/tpc.001768Han, L., Li, G.-J., Yang, K.-Y., Mao, G., Wang, R., Liu, Y., & Zhang, S. (2010). Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis. The Plant Journal, no-no. doi:10.1111/j.1365-313x.2010.04318.xBellés, J. M., Granell, A., Durán-vila, N., & Conejero, V. (1989). ACC Synthesis as the Activated Step Responsible for the Rise of Ethylene Production Accompanying Citrus Exocortis Viroid Infection in Tomato Plants. Journal of Phytopathology, 125(3), 198-208. doi:10.1111/j.1439-0434.1989.tb01061.xBellés, J. M., Vera, P., Durán-Vila, N., & Conejero, V. (1989). Ethylene production in tomato cultures infected with citrus exocortis viroid (CEV). Canadian Journal of Plant Pathology, 11(3), 256-262. doi:10.1080/07060668909501109Bellés, J. M., & Conejero, V. (1989). Evolution of Ethylene Production, ACC and Conjugated ACC Levels Accompanying Symptom Development in Tomato and Gynura aurantiaca DC Leaves Infected with Citrus Exocortis Viroid (CEV). Journal of Phytopathology, 127(1), 81-85. doi:10.1111/j.1439-0434.1989.tb04506.xBellés, J. M., & Conejero, V. (1991). Suppression by Citrus Exocortis Viroid Infection of the Naturally Occurring Inhibitor of the Conversion of 1-aminocyclopropane-1-carboxylic Acid to Ethylene by Tomato Microsomes. Journal of Phytopathology, 132(3), 245-250. doi:10.1111/j.1439-0434.1991.tb00117.xJu, C., Yoon, G. M., Shemansky, J. M., Lin, D. Y., Ying, Z. I., Chang, J., … Chang, C. (2012). CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proceedings of the National Academy of Sciences, 109(47), 19486-19491. doi:10.1073/pnas.1214848109Aloni, R., Wolf, A., Feigenbaum, P., Avni, A., & Klee, H. J. (1998). The Never ripe Mutant Provides Evidence That Tumor-Induced Ethylene Controls the Morphogenesis ofAgrobacterium tumefaciens-Induced Crown Galls on Tomato Stems1,2. Plant Physiology, 117(3), 841-849. doi:10.1104/pp.117.3.841Klee, H. J. (2004). Ethylene Signal Transduction. Moving beyond Arabidopsis. Plant Physiology, 135(2), 660-667. doi:10.1104/pp.104.040998Chen, Y., Rofidal, V., Hem, S., Gil, J., Nosarzewska, J., Berger, N., … Chervin, C. (2019). Targeted Proteomics Allows Quantification of Ethylene Receptors and Reveals SlETR3 Accumulation in Never-Ripe Tomatoes. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.01054HU, X., NIE, X., SONG, Y., XIONG, X., & Tai, H. (2011). Ethylene is Involved but Plays a Limited Role in Tomato Chlorotic Dwarf Viroid-Induced Symptom Development in Tomato. Agricultural Sciences in China, 10(4), 544-552. doi:10.1016/s1671-2927(11)60035-7Dı́az, J., ten Have, A., & van Kan, J. A. L. (2002). The Role of Ethylene and Wound Signaling in Resistance of Tomato to Botrytis cinerea  . Plant Physiology, 129(3), 1341-1351. doi:10.1104/pp.001453Lund, S. T., Stall, R. E., & Klee, H. J. (1998). Ethylene Regulates the Susceptible Response to Pathogen Infection in Tomato. The Plant Cell, 10(3), 371-382. doi:10.1105/tpc.10.3.371Tsolakidou, M.-D., Pantelides, lakovos S., Tzima, A. K., Kang, S., Paplomatas, E. J., & Tsaltas, D. (2019). Disruption and Overexpression of the Gene Encoding ACC (1-Aminocyclopropane-1-Carboxylic Acid) Deaminase in Soil-Borne Fungal Pathogen Verticillium dahliae Revealed the Role of ACC as a Potential Regulator of Virulence and Plant Defense. Molecular Plant-Microbe Interactions®, 32(6), 639-653. doi:10.1094/mpmi-07-18-0203-rWięsyk, A., Iwanicka-Nowicka, R., Fogtman, A., Zagórski-Ostoja, W., & Góra-Sochacka, A. (2018). Time-Course Microarray Analysis Reveals Differences between Transcriptional Changes in Tomato Leaves Triggered by Mild and Severe Variants of Potato Spindle Tuber Viroid. Viruses, 10(5), 257. doi:10.3390/v10050257Eiras, M., Nohales, M. A., Kitajima, E. W., Flores, R., & Daròs, J. A. (2010). Ribosomal protein L5 and transcription factor IIIA from Arabidopsis thaliana bind in vitro specifically Potato spindle tuber viroid RNA. Archives of Virology, 156(3), 529-533. doi:10.1007/s00705-010-0867-xDubé, A., Bisaillon, M., & Perreault, J.-P. (2009). Identification of Proteins from Prunus persica That Interact with Peach Latent Mosaic Viroid. Journal of Virology, 83(23), 12057-12067. doi:10.1128/jvi.01151-09Lisón, P., Tárraga, S., López-Gresa, P., Saurí, A., Torres, C., Campos, L., … Rodrigo, I. (2013). A noncoding plant pathogen provokes both transcriptional and posttranscriptional alterations in tomato. PROTEOMICS, 13(5), 833-844. doi:10.1002/pmic.201200286Cottilli, P., Belda-Palazón, B., Adkar-Purushothama, C. R., Perreault, J.-P., Schleiff, E., Rodrigo, I., … Lisón, P. (2019). Citrus exocortis viroid causes ribosomal stress in tomato plants. Nucleic Acids Research, 47(16), 8649-8661. doi:10.1093/nar/gkz679Ohbayashi, I., Lin, C.-Y., Shinohara, N., Matsumura, Y., Machida, Y., Horiguchi, G., … Sugiyama, M. (2017). Evidence for a Role of ANAC082 as a Ribosomal Stress Response Mediator Leading to Growth Defects and Developmental Alterations in Arabidopsis. The Plant Cell, 29(10), 2644-2660. doi:10.1105/tpc.17.00255Mayer, C., & Grummt, I. (2005). Cellular Stress and Nucleolar Function. Cell Cycle, 4(8), 1036-1038. doi:10.4161/cc.4.8.1925Weis, B. L., Kovacevic, J., Missbach, S., & Schleiff, E. (2015). Plant-Specific Features of Ribosome Biogenesis. Trends in Plant Science, 20(11), 729-740. doi:10.1016/j.tplants.2015.07.003Palm, D., Streit, D., Shanmugam, T., Weis, B. L., Ruprecht, M., Simm, S., & Schleiff, E. (2018). Plant-specific ribosome biogenesis factors in Arabidopsis thaliana with essential function in rRNA processing. Nucleic Acids Research, 47(4), 1880-1895. doi:10.1093/nar/gky1261Christoffersen, R. E., & Laties, G. G. (1982). Ethylene regulation of gene expression in carrots. Proceedings of the National Academy of Sciences, 79(13), 4060-4063. doi:10.1073/pnas.79.13.4060Marei, N., & Romani, R. (1971). Ethylene-stimulated Synthesis of Ribosomes, Ribonucleic Acid, and Protein in Developing Fig Fruits. Plant Physiology, 48(6), 806-808. doi:10.1104/pp.48.6.806Spiers, J., Brady, C., Grierson, D., & Lee, E. (1984). Changes in Ribosome Organization and Messenger RNA Abundance in Ripening Tomato Fruits. Functional Plant Biology, 11(3), 225. doi:10.1071/pp9840225Merchante, C., Brumos, J., Yun, J., Hu, Q., Spencer, K. R., Enríquez, P., … Alonso, J. M. (2015). Gene-Specific Translation Regulation Mediated by the Hormone-Signaling Molecule EIN2. Cell, 163(3), 684-697. doi:10.1016/j.cell.2015.09.036Tornero, P., Rodrigo, I., Conejero, V., & Vera, P. (1993). Nucleotide Sequence of a cDNA Encoding a Pathogenesis-Related Protein, P1-p14, from Tomato (Lycopersicon esculentum). Plant Physiology, 102(1), 325-325. doi:10.1104/pp.102.1.325Granell, A., Bellés, J. M., & Conejero, V. (1987). Induction of pathogenesis-related proteins in tomato by citrus exocortis viroid, silver ion and ethephon. Physiological and Molecular Plant Pathology, 31(1), 83-90. doi:10.1016/0885-5765(87)90008-7Mehari, Z. H., Elad, Y., Rav-David, D., Graber, E. R., & Meller Harel, Y. (2015). Induced systemic resistance in tomato (Solanum lycopersicum) against Botrytis cinerea by biochar amendment involves jasmonic acid signaling. Plant and Soil, 395(1-2), 31-44. doi:10.1007/s11104-015-2445-1Nakatsuka, A., Murachi, S., Okunishi, H., Shiomi, S., Nakano, R., Kubo, Y., & Inaba, A. (1998). Differential Expression and Internal Feedback Regulation of 1-Aminocyclopropane-1-Carboxylate Synthase, 1-Aminocyclopropane-1-Carboxylate Oxidase, and Ethylene Receptor Genes in Tomato Fruit during Development and Ripening. Plant Physiology, 118(4), 1295-1305. doi:10.1104/pp.118.4.1295Katsarou, K., Wu, Y., Zhang, R., Bonar, N., Morris, J., Hedley, P. E., … Hornyik, C. (2016). Insight on Genes Affecting Tuber Development in Potato upon Potato spindle tuber viroid (PSTVd) Infection. PLOS ONE, 11(3), e0150711. doi:10.1371/journal.pone.0150711Bellés, J. M., Carbonell, J., & Conejero, V. (1991). Polyamines in Plants Infected by Citrus Exocortis Viroid or Treated with Silver Ions and Ethephon. Plant Physiology, 96(4), 1053-1059. doi:10.1104/pp.96.4.1053O’Donnell, P. J., Jones, J. B., Antoine, F. R., Ciardi, J., & Klee, H. J. (2001). Ethylene-dependent salicylic acid regulates an expanded cell death response to a plant pathogen. The Plant Journal, 25(3), 315-323. doi:10.1046/j.1365-313x.2001.00968.xGómez, G., Martínez, G., & Pallás, V. (2008). Viroid-Induced Symptoms in Nicotiana benthamiana Plants Are Dependent on RDR6 Activity  . Plant Physiology, 148(1), 414-423. doi:10.1104/pp.108.120808Li, G., Meng, X., Wang, R., Mao, G., Han, L., Liu, Y., & Zhang, S. (2012). Dual-Level Regulation of ACC Synthase Activity by MPK3/MPK6 Cascade and Its Downstream WRKY Transcription Factor during Ethylene Induction in Arabidopsis. PLoS Genetics, 8(6), e1002767. doi:10.1371/journal.pgen.1002767Berrocal-Lobo, M., Molina, A., & Solano, R. (2002). Constitutive expression ofETHYLENE-RESPONSE-FACTOR1inArabidopsisconfers resistance to several necrotrophic fungi. The Plant Journal, 29(1), 23-32. doi:10.1046/j.1365-313x.2002.01191.xChowdhury, S., Basu, A., & Kundu, S. (2017). Biotrophy-necrotrophy switch in pathogen evoke differential response in resistant and susceptible sesame involving multiple signaling pathways at different phases. Scientific Reports, 7(1). doi:10.1038/s41598-017-17248-7Shin, S., Lv, J., Fazio, G., Mazzola, M., & Zhu, Y. (2014). Transcriptional regulation of ethylene and jasmonate mediated defense response in apple (Malus domestica) root during Pythium ultimum infection. Horticulture Research, 1(1). doi:10.1038/hortres.2014.53Glazebrook, J. (2005). Contrasting Mechanisms of Defense Against Biotrophic and Necrotrophic Pathogens. Annual Review of Phytopathology, 43(1), 205-227. doi:10.1146/annurev.phyto.43.040204.135923McDowell, J. M., & Dangl, J. L. (2000). Signal transduction in the plant immune response. Trends in Biochemical Sciences, 25(2), 79-82. doi:10.1016/s0968-0004(99)01532-7Heck, S., Grau, T., Buchala, A., Metraux, J.-P., & Nawrath, C. (2003). Genetic evidence that expression of NahG modifies defence pathways independent of salicylic acid biosynthesis in the Arabidopsis-Pseudomonas syringae pv. tomato interaction. The Plant Journal, 36(3), 342-352. doi:10.1046/j.1365-313x.2003.01881.xConejero, V., & Granell, A. (1986). Stimulation of a viroid-like syndrome and the impairment of viroid infection in Gynura aurantiaca plants by treatment with silver ions. Physiological and Molecular Plant Pathology, 29(3), 317-323. doi:10.1016/s0048-4059(86)80048-0Yan, S., & Dong, X. (2014). Perception of the plant immune signal salicylic acid. Current Opinion in Plant Biology, 20, 64-68. doi:10.1016/j.pbi.2014.04.006Fu, Z. Q., Yan, S., Saleh, A., Wang, W., Ruble, J., Oka, N., … Dong, X. (2012). NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature, 486(7402), 228-232. doi:10.1038/nature11162Schott-Verdugo, S., Müller, L., Classen, E., Gohlke, H., & Groth, G. (2019). Structural Model of the ETR1 Ethylene Receptor Transmembrane Sensor Domain. Scientific Reports, 9(1). doi:10.1038/s41598-019-45189-wClark, D. G., Gubrium, E. K., Barrett, J. E., Nell, T. A., & Klee, H. J. (1999). Root Formation in Ethylene-Insensitive Plants. Plant Physiology, 121(1), 53-60. doi:10.1104/pp.121.1.53Rodrı́guez, F. I., Esch, J. J., Hall, A. E., Binder, B. M., Schaller, G. E., & Bleecker, A. B. (1999). A Copper Cofactor for the Ethylene Receptor ETR1 from Arabidopsis. Science, 283(5404), 996-998. doi:10.1126/science.283.5404.996Schaller, G. E., Ladd, A. N., Lanahan, M. B., Spanbauer, J. M., & Bleecker, A. B. (1995). The Ethylene Response Mediator ETR1 from Arabidopsis Forms a Disulfide-linked Dimer. Journal of Biological Chemistry, 270(21), 12526-12530. doi:10.1074/jbc.270.21.12526Gao, Z., & Schaller, G. E. (2009). The role of receptor interactions in regulating ethylene signal transduction. Plant Signaling & Behavior, 4(12), 1152-1153. doi:10.4161/psb.4.12.9943Gao, Z., Wen, C.-K., Binder, B. M., Chen, Y.-F., Chang, J., Chiang, Y.-H., … Schaller, G. E. (2008). Heteromeric Interactions among Ethylene Receptors Mediate Signaling in Arabidopsis. Journal of Biological Chemistry, 283(35), 23801-23810. doi:10.1074/jbc.m800641200Grefen, C., Städele, K., Růžička, K., Obrdlik, P., Harter, K., & Horák, J. (2008). Subcellular Localization and In Vivo Interactions of the Arabidopsis thaliana Ethylene Receptor Family Members. Molecular Plant, 1(2), 308-320. doi:10.1093/mp/ssm015Kim, H. J., Park, J.-H., Kim, J., Kim, J. J., Hong, S., Kim, J., … Hwang, D. (2018). Time-evolving genetic networks reveal a NAC troika that negatively regulates leaf senescence in Arabidopsis. Proceedings of the National Academy of Sciences, 115(21), E4930-E4939. doi:10.1073/pnas.1721523115Semancik, J. S., Roistacher, C. N., Rivera-Bustamante, R., & Duran-Vila, N. (1988). Citrus Cachexia Viroid, a New Viroid of Citrus: Relationship to Viroids of the Exocortis Disease Complex. Journal of General Virology, 69(12), 3059-3068. doi:10.1099/0022-1317-69-12-3059Campos, L., Granell, P., Tárraga, S., López-Gresa, P., Conejero, V., Bellés, J. M., … Lisón, P. (2014). Salicylic acid and gentisic acid induce RNA silencing-related genes and plant resistance to RNA pathogens. Plant Physiology and Biochemistry, 77, 35-43. doi:10.1016/j.plaphy.2014.01.016Adkar-Purushothama, C. R., Brosseau, C., Giguère, T., Sano, T., Moffett, P., & Perreault, J.-P. (2015). Small RNA Derived from the Virulence Modulating Region of the Potato spindle tuber viroid Silences callose synthase Genes of Tomato Plants. The Plant Cell, 27(8), 2178-2194. doi:10.1105/tpc.15.00523LAEMMLI, U. K. (1970). Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature, 227(5259), 680-685. doi:10.1038/227680a

    Symptom Severity, Infection Progression and Plant Responses in Solanum Plants Caused by Three Pospiviroids Vary with the Inoculation Procedure

    Full text link
    [EN] Infectious viroid clones consist of dimeric cDNAs used to generate transcripts which mimic the longer-than-unit replication intermediates. These transcripts can be either generated in vitro or produced in vivo by agro-inoculation. We have designed a new plasmid, which allows both inoculation methods, and we have compared them by infecting Solanum lycopersicum and Solanum melongena with clones of Citrus exocortis virod (CEVd), Tomato chlorotic dwarf viroid (TCDVd), and Potato spindle tuber viroid (PSTVd). Our results showed more uniform and severe symptoms in agro-inoculated plants. Viroid accumulation and the proportion of circular and linear forms were different depending on the host and the inoculation method and did not correlate with the symptoms, which correlated with an increase in PR1 induction, accumulation of the defensive signal molecules salicylic (SA) and gentisic (GA) acids, and ribosomal stress in tomato plants. The alteration in ribosome biogenesis was evidenced by both the upregulation of the tomato ribosomal stress marker SlNAC082 and the impairment in 18S rRNA processing, pointing out ribosomal stress as a novel signature of the pathogenesis of nuclear-replicating viroids. In conclusion, this updated binary vector has turned out to be an efficient and reproducible method that will facilitate the studies of viroid¿host interactionsThis work was supported by the Spanish Ministry of Economy and Competitiveness (co-supported by FEDER) Grants BIO2017-88321-R (V.P.) and PID2019-104126RB-I00 (G.G.). The funders had no role in the experiment design, data analysis, decision to publish, or preparation of the manuscriptVázquez Prol, F.; Márquez-Molins, J.; Rodrigo Bravo, I.; López-Gresa, MP.; Belles Albert, JM.; Gomez, GG.; Pallás Benet, V.... (2021). Symptom Severity, Infection Progression and Plant Responses in Solanum Plants Caused by Three Pospiviroids Vary with the Inoculation Procedure. International Journal of Molecular Sciences. 22(12):1-16. https://doi.org/10.3390/ijms22126189S116221
    corecore