18 research outputs found

    Machine Learning Algorithms to Classify and Quantify Multiple Behaviours in Dairy Calves Using a Sensor: Moving Beyond Classification in Precision Livestock

    Get PDF
    Previous research has shown that sensors monitoring lying behaviours and feeding can detect early signs of ill health in calves. There is evidence to suggest that monitoring change in a single behaviour might not be enough for disease prediction. In calves, multiple behaviours such as locomo-tor play, self-grooming, feeding and activity whilst lying are likely to be informative. However, these behaviours can occur rarely in the real world, which means simply counting behaviours based on the prediction of a classifier can lead to overestimation. Here, we equipped thirteen pre-weaned dairy calves with collar-mounted sensors and monitored their behaviour with video cameras. Behavioural observations were recorded and merged with sensor signals. Features were calculated for 1–10-s windows and an AdaBoost ensemble learning algorithm implemented to classify behaviours. Finally, we developed an adjusted count quantification algorithm to predict the prevalence of locomotor play behaviour on a test dataset with low true prevalence (0.27%). Our algorithm identified locomotor play (99.73% accuracy), self-grooming (98.18% accuracy), ruminating (94.47% accuracy), non-nutritive suckling (94.96% accuracy), nutritive suckling (96.44% accuracy), active lying (90.38% accuracy) and non-active lying (90.38% accuracy). Our results detail recommended sampling frequencies, feature selection and window size. The quantification estimates of locomotor play behaviour were highly correlated with the true prevalence (0.97; p < 0.001) with a total overestimation of 18.97%. This study is the first to implement machine learning approaches for multi-class behaviour identification as well as behaviour quantification in calves. This has potential to contribute towards new insights to evaluate the health and welfare in calves by use of wearable sensors

    A Combined Offline and Online Algorithm for Real-Time and Long-Term Classification of Sheep Behaviour: Novel Approach for Precision Livestock Farming

    Get PDF
    Real-time and long-term behavioural monitoring systems in precision livestock farming have huge potential to improve welfare and productivity for the better health of farm animals. However, some of the biggest challenges for long-term monitoring systems relate to “concept drift”, which occurs when systems are presented with challenging new or changing conditions, and/or in scenarios where training data is not accurately reflective of live sensed data. This study presents a combined offline algorithm and online learning algorithm which deals with concept drift and is deemed by the authors as a useful mechanism for long-term in-the-field monitoring systems. The proposed algorithm classifies three relevant sheep behaviours using information from an embedded edge device that includes tri-axial accelerometer and tri-axial gyroscope sensors. The proposed approach is for the first time reported in precision livestock behavior monitoring and demonstrates improvement in classifying relevant behaviour in sheep, in real-time, under dynamically changing conditions

    Automated detection of lameness in sheep using machine learning approaches: novel insights into behavioural differences among lame and non-lame sheep

    Get PDF
    Lameness in sheep is the biggest cause of concern regarding poor health and welfare among sheep producing countries. Best practice for lameness relies on rapid treatment, yet there are no objective measures of lameness detection. Use of accelerometers and gyroscopes have been widely used in human activity studies and their use is becoming increasingly common in livestock. In this study, we used 23 datasets (10 non-lame and 13 lame sheep) from an accelerometer and gyroscope-based ear sensor with a sampling frequency of 16 Hz to develop and compare algorithms that can differentiate lameness within three different activities (walking, standing and lying). We show for the first time that features extracted from accelerometer and gyroscope signals can differentiate between lame and non-lame sheep while standing, walking and lying. The random forest algorithm performed best for classifying lameness with accuracy of 84.91% within lying, 81.15% within standing and 76.83% within walking and overall correctly classified over 80% sheep within activities. Both accelerometer and gyroscope-based features ranked among the top 10 features for classification. Our results suggest that novel behavioural differences between lame and non-lame sheep across all three activities could be used to develop an automated system for lameness detection

    Indication of a personality trait in dairy calves and its link to weight gain through automatically collected feeding behaviours

    Get PDF
    Farm animal personality traits are of interest since they can help predict individual variation in behaviour and productivity. However, personality traits are currently inferred using behavioural tests which are impractical outside of research settings. To meet the definition of a personality trait, between-individual differences in related behaviours must be temporally as well as contextually stable. In this study, we used data collected by computerised milk feeders from 76 calves over two contexts, pair housing and group housing, to test if between-individual differences in feeding rate and meal frequency meet the definition for a personality trait. Results show that between-individual differences in feeding rate and meal frequency were related, and, for each behaviour, between-individual differences were positively and significantly correlated across contexts. In addition, feeding rate and meal frequency were positively and significantly associated with weight gain. Together, these results indicate the existence of a personality trait which positions high meal frequency, fast drinking, fast growing calves at one end and low meal frequency, slow drinking, and slow growing calves at the other. Our results suggest that data already available on commercial farms could be harnessed to establish a personality trait

    Familiarity, age, weaning and health status impact social proximity networks in dairy calves

    Get PDF
    Social network analysis in dairy calves has not been widely studied, with previous studies limited by the short study duration, and low number of animals and replicates. In this study, we investigated social proximity interactions of 79 Holstein–Friesian calves from 5 cohorts for up to 76 days. Networks were computed using 4-day aggregated associations obtained from ultrawideband location sensor technology, at 1 Hz sampling rate. The effect of age, familiarity, health, and weaning status on the social proximity networks of dairy calves was assessed. Networks were poorly correlated (non-stable) between the different 4-day periods, in the majority of them calves associated heterogeneously, and individuals assorted based on previous familiarity for the whole duration of the study. Age significantly increased association strength, social time and eigenvector centrality and significantly decreased closeness and coefficient of variation in association (CV). Sick calves had a significantly lower strength, social time, centrality and CV, and significantly higher closeness compared to the healthy calves. During and after weaning, calves had significantly lower closeness and CV, and significantly higher association strength, social time, and eigenvector centrality. These results indicate that age, familiarity, weaning, and sickness have a significant impact on the variation of social proximity interaction of calves

    Threshold switching via electric field induced crystallization in phase-change memory devices

    Get PDF
    Copyright © 2012 American Institute of PhysicsPhase-change devices exhibit characteristic threshold switching from the reset (off) to the set (on) state. Mainstream understanding of this electrical switching phenomenon is that it is initiated electronically via the influence of high electric fields on inter-band trap states in the amorphous phase. However, recent work has suggested that field induced (crystal) nucleation could instead be responsible. We compare and contrast these alternative switching “theories” via realistic simulations of device switching both with and without electric field dependent contributions to the system free energy. Results show that although threshold switching can indeed be obtained purely by electric field induced nucleation, the fields required are significantly larger than experimentally measured values

    Evaluation of sampling frequency, window size and sensor position for classification of sheep behaviour

    Get PDF
    Automated behavioural classification and identification through sensors has the potential to improve health and welfare of the animals. Position of a sensor, sampling frequency and window size of segmented signal data has a major impact on classification accuracy in activity recognition and energy needs for the sensor, yet, there are no studies in precision livestock farming that have evaluated the effect of all these factors simultaneously. The aim of this study was to evaluate the effects of position (ear and collar), sampling frequency (8, 16 and 32 Hz) of a triaxial accelerometer and gyroscope sensor and window size (3, 5 and 7 s) on the classification of important behaviours in sheep such as lying, standing and walking. Behaviours were classified using a random forest approach with 44 feature characteristics. The best performance for walking, standing and lying classification in sheep (accuracy 95%, F-score 91%–97%) was obtained using combination of 32 Hz, 7 s and 32 Hz, 5 s for both ear and collar sensors, although, results obtained with 16 Hz and 7 s window were comparable with accuracy of 91%–93% and F-score 88%–95%. Energy efficiency was best at a 7 s window. This suggests that sampling at 16 Hz with 7 s window will offer benefits in a real-time behavioural monitoring system for sheep due to reduced energy needs

    Proximity Interactions in a Permanently Housed Dairy Herd: Network Structure, Consistency, and Individual Differences

    Get PDF
    Understanding the herd structure of housed dairy cows has the potential to reveal preferential interactions, detect changes in behavior indicative of illness, and optimize farm management regimes. This study investigated the structure and consistency of the proximity interaction network of a permanently housed commercial dairy herd throughout October 2014, using data collected from a wireless local positioning system. Herd-level networks were determined from sustained proximity interactions (pairs of cows continuously within three meters for 60 s or longer), and assessed for social differentiation, temporal stability, and the influence of individual-level characteristics such as lameness, parity, and days in milk. We determined the level of inter-individual variation in proximity interactions across the full barn housing, and for specific functional zones within it (feeding, non-feeding). The observed networks were highly connected and temporally varied, with significant preferential assortment, and inter-individual variation in daily interactions in the non-feeding zone. We found no clear social assortment by lameness, parity, or days in milk. Our study demonstrates the potential benefits of automated tracking technology to monitor the proximity interactions of individual animals within large, commercially relevant groups of livestock

    Bunching behaviour in housed dairy cows at higher ambient temperatures.

    Get PDF
    Bunching behavior in cattle may occur for several reasons including enabling social interactions, a response to stress or danger, or due to shared interest in resources such as feeding or watering areas. There is evidence in pasture grazed cattle that bunching may occur more frequently at higher ambient temperatures, possibly due to sharing of fly-load or to seek shade from the direct sun under heat stress conditions. Here we demonstrate how bunching behavior is associated with higher ambient temperatures in a barn-housed UK dairy herd. A real-time local positioning system (RTLS) was used, as part of a precision livestock farming (PLF) approach, to track the spatial position and activity of a commercial dairy herd (c100 cows) in a freestall barn continuously at high temporal resolution for 4 mo between August and November 2014. Bunching was determined using 4 different spatial measures determined on an hourly basis: herd full and core range size, mean herd inter-cow distance (ICD), and mean herd nearest neighbor distance (NND). For hourly mean ambient temperatures above 20°C, the herd showed higher bunching behavior with increasing ambient temperature (i.e., reduced full and core range size, ICD, and NND). Aggregated space-use intensity was found to positively correlate with localized variations in temperature across the barn (as measured by animal mounted sensors), but the level of correlation decreased at higher ambient barn temperatures. Bunching behavior may increase localized temperatures experienced by individuals and hence may be a maladaptive behavioral response in housed dairy cattle, which are known to suffer heat stress at higher temperatures. Our study is the first to use high-resolution positional data to provide evidence of associations between bunching behavior and higher ambient temperatures for a barn-housed dairy herd in a temperate region (UK). Further studies are needed to explore the exact mechanisms for this response to inform both welfare and production management

    The Status of Pet Rabbit Breeding and Online Sales in the UK: A Glimpse into an Otherwise Elusive Industry

    Get PDF
    Conditions of pet rabbit breeding colonies and breeder practices are undocumented and very little is known about the pet rabbit sales market. Here, multiple methods were employed to investigate this sector of the UK pet industry. A freedom of information request sent to 10% of councils revealed confusion and inconsistency in licensing conditions. Data from 1-month of online sale adverts (3446) identified 646 self-declared breeders, of which 1.08% were licensed. Further, despite veterinary advice to vaccinate rabbits from five weeks, only 16.7% rabbits were vaccinated and 9.2% of adult rabbits were neutered. Thirty-three breeders completed a questionnaire of which 51.5% provided smaller housing than recommended, the majority housed rabbits singly and bucks were identified as most at risk of compromised welfare. However, most breeders provided enrichment and gave a diet compliant with recommended guidelines. Mini-lops and Netherland dwarfs were the most commonly sold breeds, both of which are brachycephalic, which can compromise their health and wellbeing. From sales data extrapolation, we estimate that 254,804 rabbits are purposefully bred for the UK online pet sales market each year. This data is the first of its kind and highlights welfare concerns within the pet rabbit breeding sector, which is unregulated and difficult to access
    corecore