21 research outputs found
TRPV6 Determines the Effect of Vitamin D3 on Prostate Cancer Cell Growth
Despite remarkable advances in the therapy and prevention of prostate cancer it is still the second cause of death from cancer in industrialized countries. Many therapies initially shown to be beneficial for the patients were abandoned due to the high drug resistance and the evolution rate of the tumors. One of the prospective therapeutical agents even used in the first stage clinical trials, 1,25-dihydroxyvitamin D3, was shown to be either unpredictable or inefficient in many cases. We have already shown that TRPV6 calcium channel, which is the direct target of 1,25-dihydroxyvitamin D3 receptor, positively controls prostate cancer proliferation and apoptosis resistance (Lehen'kyi et al., Oncogene, 2007). However, how the known 1,25-dihydroxyvitamin D3 antiproliferative effects may be compatible with the upregulation of pro-oncogenic TRPV6 channel remains a mystery. Here we demonstrate that in low steroid conditions 1,25-dihydroxyvitamin D3 upregulates the expression of TRPV6, enchances the proliferation by increasing the number of cells entering into S-phase. We show that these pro-proliferative effects of 1,25-dihydroxyvitamin D3 are directly mediated via the overexpression of TRPV6 channel which increases calcium uptake into LNCaP cells. The apoptosis resistance of androgen-dependent LNCaP cells conferred by TRPV6 channel is drastically inversed when 1,25-dihydroxyvitamin D3 effects were combined with the successful TRPV6 knockdown. In addition, the use of androgen-deficient DU-145 and androgen-insensitive LNCaP C4-2 cell lines allowed to suggest that the ability of 1,25-dihydroxyvitamin D3 to induce the expression of TRPV6 channel is a crucial determinant of the success or failure of 1,25-dihydroxyvitamin D3-based therapies
Implication des canaux perméables au calcium dans l'homéostasie tissulaire de l'épiderme humain
La structure de l épiderme est le résultat de la régulation de l équilibre entre la prolifération, la migration et la différenciation des kératinocytes. Le calcium est un second messager contrôlant ces mécanismes. Parmi les différents acteurs de l homéostasie calcique, les canaux ioniques jouent un rôle majeur. Ainsi, l identification de ces canaux et des mécanismes par lesquels ils régulent la différenciation, la prolifération et la migration des kératinocytes est primordiale pour une meilleure compréhension de la physiologie de la peau humaine. Mes travaux se sont donc focalisés sur l implication de ces canaux calciques dans les mécanismes impliqués dans le développement de l épiderme. Les résultats ainsi obtenus ont pu mettre en évidence que la présence du canal TRPV6 à la membrane des kératinocytes est importante pour leur différenciation et qu elle pouvait être régulée par un mécanisme de translocation à la membrane plasmique. Ces travaux montrent également, pour la première fois, que le canal Orai1 est exprimé dans les kératinocytes de l épiderme humain et qu il participe au courant calcique de type SOC. Le canal Orai1 n est pas nécessaire à l induction de la différenciation mais il est principalement impliqué dans la prolifération et la migration des kératinocytes des cellules de la couche basale de l épiderme. L implication d Orai1 dans la migration des kératinocytes est liée à son rôle dans la dynamique des adhésions focales passant par l activation de la protéine kinase FAK.Structure of epidermis is the result of a fine regulated balance between proliferation, differentiation and migration of keratinocytes. Calcium is a second messenger controlling these mechanisms. Among the different players in calcium homeostasis, ionic channels play a major role. The study of these channels and the mechanisms by which they regulate the differentiation, the proliferation and the migration of keratinocytes is therefore crucial in the understanding of skin physiology. This study is focused on these different Ca2+ channels and their implication in the development of the epidermis. The results obtained have shown that TRPV6 plasma membrane expression in keratinocytes is important for differentiation and that it could be regulated by its translocation to the plasma membrane. These results also showed, for the first time, that Orai1 channels are expressed in human epidermis keratinocytes and are involved in SOC current. Also, Orai1 is not necessary for the induction of differentiation, but is mostly implicated in proliferation and migration of non-differentiated keratinocytes, like the cells in the basal layer of epidermis. Orai1 is, in fact, involved in the dynamic of the formation and the turnover of focal adhesions through activation of the protein kinase FAK. Finally, preliminary results have shown that Ca2+-induced differentiation of keratinocytes induces several phases of cytosolic Ca2+ concentration variations involving TRPV6 and Orai1 channels in different ways.LILLE1-Bib. Electronique (590099901) / SudocSudocFranceF
Comparison of fluorescence probes for intracellular sodium imaging in prostate cancer cell lines
International audienceSodium (Na+) ions are known to regulate many signaling pathways involved in both physiological and pathological conditions. In particular, alterations in intracellular concentrations of Na+ and corresponding changes in membrane potential are known to be major actors of cancer progression to metastatic phenotype. Though the functionality of Na+ channels and the corresponding Na+ currents can be investigated using the patch-clamp technique, the latter is rather invasive and a technically difficult method to study intracellular Na+ transients compared to Na+ fluorescence imaging. Despite the fact that Na+ signaling is considered an important controller of cancer progression, only few data using Na+ imaging approaches are available so far, suggesting the persisting challenge within the scientific community. In this study, we describe in detail the approach for application of Na+ imaging technique to measure intracellular Na+ variations in human prostate cancer cells. Accordingly, we used three Na+-specific fluorescent dyes–Na+-binding benzofuran isophthalate (SBFI), CoroNa™ Green (Corona) and Asante NaTRIUM Green-2 (ANG-2). These dyes have been assessed for optimal loading conditions, dissociation constant and working range after different calibration methods, and intracellular Na+ sensitivity, in order to determine which probe can be considered as the most reliable to visualize Na+ fluctuations in vitro
TRPV6 channel controls prostate cancer cell proliferation via Ca(2+)/NFAT-dependent pathways.: Role of TRPV6 in prostate cancer
International audienceThe transient receptor potential channel, subfamily V, member 6 (TRPV6), is strongly expressed in advanced prostate cancer and significantly correlates with the Gleason >7 grading, being undetectable in healthy and benign prostate tissues. However, the role of TRPV6 as a highly Ca(2+)-selective channel in prostate carcinogenesis remains poorly understood. Here, we report that TRPV6 is directly involved in the control of prostate cancer cell (LNCaP cell line) proliferation by decreasing: (i) proliferation rate; (ii) cell accumulation in the S-phase of cell cycle and (iii) proliferating cell nuclear antigen (PCNA) expression. We demonstrate that the Ca(2+) uptake into LNCaP cells is mediated by TRPV6, with the subsequent downstream activation of the nuclear factor of activated T-cell transcription factor (NFAT). TRPV6-mediated Ca(2+) entry is also involved in apoptosis resistance of LNCaP cells. Our results suggest that TRPV6 expression in LNCaP cells is regulated by androgen receptor, however, in a ligand-independent manner. We conclude that the upregulation of TRPV6 Ca(2+) channel in prostate cancer cells may represent a mechanism for maintaining a higher proliferation rate, increasing cell survival and apoptosis resistance as well.Oncogene (2007) 26, 7380-7385; doi:10.1038/sj.onc.1210545; published online 28 May 2007
Passive calcium leak via translocon is a first step for iPLA2-pathway regulated store operated channels activation.
Calcium concentration within the endoplasmic reticulum (ER) plays an essential role in cell physiopathology. One of the most enigmatic mechanisms responsible for Ca2+ concentration in the ER is passive calcium leak. Previous studies have shown that the translocon complex is permeable to calcium. However, the involvement of the translocon in the passive calcium leak has not been directly demonstrated. Furthermore, the question whether the passive store depletion via the translocon could activate SOC (store operated channels) replenishing the ER, remains still unresolved. In this study, for the first time, we show that thapsigargin and calcium chelators deplete ER via translocon. Indeed, using confocal imaging, we demonstrate that when the number of opened translocons was lowered neither thapsigargin nor calcium chelators could induce ER store depletion. We also demonstrate that calcium leakage occurring via the translocon activates store-operated current, which is, by its kinetic and pharmacology, similar to that evoked by thapsigargin and EGTA (but not IP3), thus highlighting our hypothesis that calcium leakage via the translocon is a first step for activation of the specific iPLA2-regulated SOC. As the translocon is present in yeast and mammalian cells, our findings suggest that translocon-related calcium signaling is a common phenomenon
Interaction of Human α-1-Acid Glycoprotein (AGP) with Citrate-Stabilized Gold Nanoparticles: Formation of Unexpectedly Strong Binding Events
International audienc
TRPC channels determine human keratinocyte differentiation: new insight into basal cell carcinoma.
Aberrant keratinocyte differentiation is considered to be a key mechanism in the onset of hyperproliferative dermatological diseases, including basal cell carcinoma (BCC). It is, therefore, vital to understand what drives keratinocytes to develop such pathological phenotypes. The role of calcium in keratinocyte differentiation is uncontested but the mechanisms controlling calcium-induced differentiation have yet to be completely elucidated. This study was designed to investigate the role of calcium-permeable TRPC channels in human keratinocyte differentiation and BCC, using a combination of molecular and cell biology approaches, involving electrophysiology and Ca(2+)-imaging, on the HaCaT cell line, primary cultures of normal human keratinocytes, and BCC cells. We demonstrated that TRPC1/TRPC4 channel expression was important for keratinocyte differentiation, as knocking out these channels (by siRNA strategy) prevented the induction of Ca(2+)-induced differentiation. TRPC1/TRPC4-mediated calcium entry and endoplasmic reticulum Ca(2+) content increased significantly in differentiated keratinocytes. However, the failure of BCC cells to differentiate was related to a lack of TRPC channel expression and calcium entry. In summary, our data demonstrate that TRPC1 and TRPC4 channels are key elements in keratinocyte Ca(2+) homeostasis and differentiation and may therefore be responsible for skin pathologies.Journal Articleinfo:eu-repo/semantics/publishe
TRPV2 Mediates Adrenomedullin Stimulation of Prostate and Urothelial Cancer Cell Adhesion, Migration and Invasion
International audienceAdrenomedullin (AM) is a 52-amino acid peptide initially isolated from human pheochromocytoma. AM is expressed in a variety of malignant tissues and cancer cell lines and was shown to be a mitogenic factor capable of stimulating growth of several cancer cell types. In addition, AM is a survival factor for certain cancer cells. Some data suggest that AM might be involved in the progression cancer metastasis via angiogenesis and cell migration and invasion control. The Transient Receptor Potential channel TRPV2 is known to promote in prostate cancer cell migration and invasive phenotype and is correlated with the stage and grade of bladder cancer. In this work we show that AM induces prostate and urothelial cancer cell migration and invasion through TRPV2 translocation to plasma membrane and the subsequent increase in resting calcium level
Lysophospholipids stimulate prostate cancer cell migration via TRPV2 channel activation
International audienceThe physiological role, the mechanisms of activation. as well as the endogenous regulators for the nonselective cationic channel TRPV2 are not known so far. In the present work we report that endogenous lysophospholipids such as lysophosphatidylcholine (LPC) and lysophosphatidylinositol (LPI) induce a calcium influx via TRPV2 channel. This activation is dependent on the length of the side-chain and the nature of the lysophospholipid head-group. TRPV2-mediated calcium uptake stimulated by LPC and LPI occurred via Gq/Go-protein and phosphatidylinositol-3,4 kinase (PI3,4K) signalling. We have shown that the mechanism of TRPV2 activation induced by LPC and LPI is due to the TRPV2 channel translocation to the plasma membrane. The activation of TRPV2 channel by LPC and LPI leads to an increase in the cell migration of the prostate cancer cell line PC3. We have demonstrated that TRPV2 is directly involved in both steady-state and lysophospholipid-stimulated cancer cell migration. Thus, for the first time, we have identified one of the natural regulators of TRPV2 channel, one of the mechanisms of TRPV2 activation and regulation, as well as its pathophysiological role in cancer
Extracellular Signal-Regulated Kinases 1 and 2 and TRPC1 Channels are Required for Calcium-Sensing Receptor-Stimulated MCF-7 Breast Cancer Cell Proliferation
International audienceThe calcium-sensing receptor (CaR), is a G protein-dependent receptor that responds to increments in extracellular Ca(2+) ([Ca(2+)](o)). We previously reported that an increase in [Ca(2+)](o) induced a release of intracellular calcium and Ca(2+) entry via store operated channels (SOCs). We also demonstrated that MCF-7 cells express Transient Receptor Potential canonical 1 (TRPC1) channels. Herein, we investigated CaR intracellular signaling pathways and examined the role of TRPC1 in CaR-induced cell proliferation, through the extracellular signal-regulated Kinases 1 & 2 (ERK1/2) pathways. Treatment by [Ca(2+)](o) increased both MCF-7 cell proliferation and TRPC1 expression. Both the [Ca(2+)](o) proliferative effect and TRPC1 protein levels were abolished by the ERK1/2 inhibitors. Moreover, [Ca(2+)](o) failed to increase cell proliferation either in the presence of CaR or TRPC1 siRNAs. Both [Ca(2+)](o) and the selective CaR activator spermine, elicited time and dose-dependent ERK1/2 phosphorylation. ERK1/2 phosphorylation was almost completely inhibited by treatment with the phospholipase C and the protein kinase C inhibitors. Treatment with 2-aminoethoxydiphenyl borate (2-APB), and SKF-96365 or by siTRPC1 diminished both [Ca(2+)](o)- and spermine-stimulated ERK1/2 phosphorylation. Moreover, down-regulation of TRPC1 by siRNA reduced the Ca(2+) entry induced by CaR activation. We conclude that the CaR activates ERK1/2 via a PLC/PKC-dependent pathway. Moreover, TRPC1 is required for the ERK1/2 phosphorylation, Ca(2+) entry and the CaR-proliferative effect