31 research outputs found

    Oculogica: An Eye-Catching Innovation in Health Care and The Privacy Implications of Artificial Intelligence and Machine Learning in Diagnostics For The Human Brain

    Get PDF
    This article explores the use of Artificial Intelligence (AI) in emerging eye-tracking diagnostic technology, with a focus on both the patient data privacy and security regulations that firms, specifically device inventors and manufacturers, may face and how such firms can address the developing privacy and regulatory legal challenges. In addition, we discuss the ethical considerations of algorithmic bias, the impact such biases have on society and emerging technology, along with specific actions companies should take to maximize patient outcomes. Lastly, we offer a case study of Oculogica, an emerging digital health technology company—and its medical device (EyeBOX) – to illustrate how digital health firms can enhance patient outcomes, while ensuring data security and privacy, while simultaneously promoting responsible development of advanced algorithms for diagnostic AI

    Effect of epidural spinal cord stimulation on female sexual function after spinal cord injury

    Get PDF
    Sexual dysfunction is a common consequence for women with spinal cord injury (SCI); however, current treatments are ineffective, especially in the under-prioritized population of women with SCI. This case-series, a secondary analysis of the Epidural Stimulation After Neurologic Damage (E-STAND) clinical trial aimed to investigate the effect of epidural spinal cord stimulation (ESCS) on sexual function and distress in women with SCI. Three females, with chronic, thoracic, sensorimotor complete SCI received daily (24 h/day) tonic ESCS for 13 months. Questionnaires, including the Female Sexual Function Index (FSFI) and Female Sexual Distress Scale (FSDS) were collected monthly. There was a 3.2-point (13.2%) mean increase in total FSFI from baseline (24.5 ± 4.1) to post-intervention (27.8 ± 6.6), with a 4.8–50% improvement in the sub-domains of desire, arousal, orgasm and satisfaction. Sexual distress was reduced by 55%, with a mean decrease of 12 points (55.4%) from baseline (21.7 ± 17.2) to post-intervention (9.7 ± 10.8). There was a clinically meaningful change of 14 points in the International Standards for Neurological Classification of Spinal Cord Injury total sensory score from baseline (102 ± 10.5) to post-intervention (116 ± 17.4), without aggravating dyspareunia. ESCS is a promising treatment for sexual dysfunction and distress in women with severe SCI. Developing therapeutic interventions for sexual function is one of the most meaningful recovery targets for people with SCI. Additional large-scale investigations are needed to understand the long-term safety and feasibility of ESCS as a viable therapy for sexual dysfunction.Clinical Trial Registration:https://clinicaltrials.gov/ct2/show/NCT03026816, NCT03026816

    An Update of a Clinical Practice Guideline for the Management of Patients With Acute Spinal Cord Injury: Recommendations on the Role and Timing of Decompressive Surgery

    Get PDF
    STUDY DESIGN Clinical practice guideline development. OBJECTIVES Acute spinal cord injury (SCI) can result in devastating motor, sensory, and autonomic impairment; loss of independence; and reduced quality of life. Preclinical evidence suggests that early decompression of the spinal cord may help to limit secondary injury, reduce damage to the neural tissue, and improve functional outcomes. Emerging evidence indicates that "early" surgical decompression completed within 24 hours of injury also improves neurological recovery in patients with acute SCI. The objective of this clinical practice guideline (CPG) is to update the 2017 recommendations on the timing of surgical decompression and to evaluate the evidence with respect to ultra-early surgery (in particular, but not limited to, <12 hours after acute SCI). METHODS A multidisciplinary, international, guideline development group (GDG) was formed that consisted of spine surgeons, neurologists, critical care specialists, emergency medicine doctors, physical medicine and rehabilitation professionals, as well as individuals living with SCI. A systematic review was conducted based on accepted methodological standards to evaluate the impact of early (within 24 hours of acute SCI) or ultra-early (in particular, but not limited to, within 12 hours of acute SCI) surgery on neurological recovery, functional outcomes, administrative outcomes, safety, and cost-effectiveness. The GRADE approach was used to rate the overall strength of evidence across studies for each primary outcome. Using the "evidence-to-recommendation" framework, recommendations were then developed that considered the balance of benefits and harms, financial impact, patient values, acceptability, and feasibility. The guideline was internally appraised using the Appraisal of Guidelines for Research and Evaluation (AGREE) II tool. RESULTS The GDG recommended that early surgery (≤24 hours after injury) be offered as the preferred option for adult patients with acute SCI regardless of level. This recommendation was based on moderate evidence suggesting that patients were 2 times more likely to recover by ≥ 2 ASIA Impairment Score (AIS) grades at 6 months (RR: 2.76, 95% CI 1.60 to 4.98) and 12 months (RR: 1.95, 95% CI 1.26 to 3.18) if they were decompressed within 24 hours compared to after 24 hours. Furthermore, patients undergoing early surgery improved by an additional 4.50 (95% 1.70 to 7.29) points on the ASIA Motor Score compared to patients undergoing surgery after 24 hours post-injury. The GDG also agreed that a recommendation for ultra-early surgery could not be made on the basis of the current evidence because of the small sample sizes, variable definitions of what constituted ultra-early in the literature, and the inconsistency of the evidence. CONCLUSIONS It is recommended that patients with an acute SCI, regardless of level, undergo surgery within 24 hours after injury when medically feasible. Future research is required to determine the differential effectiveness of early surgery in different subpopulations and the impact of ultra-early surgery on neurological recovery. Moreover, further work is required to define what constitutes effective spinal cord decompression and to individualize care. It is also recognized that a concerted international effort will be required to translate these recommendations into policy

    Oculogica: An Eye-Catching Innovation in Health Care and The Privacy Implications of Artificial Intelligence and Machine Learning in Diagnostics For The Human Brain

    Get PDF
    This article explores the use of Artificial Intelligence (AI) in emerging eye-tracking diagnostic technology, with a focus on both the patient data privacy and security regulations that firms, specifically device inventors and manufacturers, may face and how such firms can address the developing privacy and regulatory legal challenges. In addition, we discuss the ethical considerations of algorithmic bias, the impact such biases have on society and emerging technology, along with specific actions companies should take to maximize patient outcomes. Lastly, we offer a case study of Oculogica, an emerging digital health technology company—and its medical device (EyeBOX) – to illustrate how digital health firms can enhance patient outcomes, while ensuring data security and privacy, while simultaneously promoting responsible development of advanced algorithms for diagnostic AI

    Differential cellular gene expression in ganglioglioma

    No full text
    PURPOSE: Gangliogliomas (GGs) are neuronal-glial tumors highly associated with epilepsy. We hypothesized that the expression of select gene families including neurotransmitter receptor subunits and growth factors would be distinct in neurons and astrocytes within GG compared with adjacent cortex and that these changes would yield insights into seizure onset and lesion formation. METHODS: Candidate gene expression was defined in single immunohistochemically labeled neurons and astrocytes microdissected from GG specimens compared with neurons and astrocytes microdissected from morphologically intact cortex adjacent to the GG or normal control cortex. RESULTS: Differential expression of 16 genes including glutamate transporter (EAAC1) and receptor (NMDA2C, mGluR5), growth factor (hepatocyte growth factor), and receptor (platelet derived growth factor receptor beta, fibroblast growth factor receptor 3) mRNAs was detected in GG neurons compared with control neurons. In astrocytes, altered expression of p75NGF, mGluR3, TGFbeta3 and Glt-1 mRNAs was detected. Nestin mRNA, a gene that exhibits enhanced expression in balloon cell cortical dysplasia, was increased in GG neurons. Because of the morphological similarities between GG and cortical dysplasia, we show that there is activation of the mTOR cascade in GG as evidenced by enhanced expression of phospho-p70S6kinase and phosphoribosomal S6 proteins. CONCLUSION: We find differential candidate gene expression in neurons and astrocytes in GG compared with adjacent cortex and show that there is activation of the mTOR pathway. These changes highlight pathways that may be pivotal for epileptogenesis and lesion growt

    Traumatic brain injury reduction in athletes by neck strengthening (TRAIN)

    No full text
    Reporting of sports-related concussions (SRCs) has risen dramatically over the last decade, increasing awareness of the need for treatment and prevention of SRCs. To date most prevention studies have focused on equipment and rule changes to sports in order to reduce the risk of injury. However, increased neck strength has been shown to be a predictor of concussion rate. In the TRAIN study, student-athletes will follow a simple neck strengthening program over the course of three years in order to better understand the relationship between neck strength and SRCs. Neck strength of all subjects will be measured at baseline and biannually over the course of the study using a novel protocol. Concussion severity and duration in any subject who incurs an SRC will be evaluated using the Sports Concussion Assessment Tool 5th edition, a questionnaire based tool utilizing several tests that are commonly affected by concussion, and an automated eye tracking algorithm. Neck strength, and improvement of neck strength, will be compared between concussed and non-concussed athletes to determine if neck strength can indeed reduce risk of concussion. Neck strength will also be analyzed taking into account concussion severity and duration to find if a strengthening program can provide a protective factor to athletes. The study population will consist of student-athletes, ages 12–23, from local high schools and colleges. These athletes are involved in a range of both contact and non-contact sports. Keywords: Concussion, Football, Sports, Student, Athlete, Brain injury, Head injuries, Neck strength, Preventio
    corecore