19 research outputs found

    Predominance of null mutations in ataxia-telangiectasia

    Get PDF
    Ataxia-telangiectasia (A-T) is an autosomal recessive disorder involving cerebellar degeneration, immunodeficiency, chromosomal instability, radiosensitivity and cancer predisposition. The responsible gene, ATM, was recently identified by positional cloning and found to encode a putative 350 kDa protein with a PI 3-kinase-like domain, presumably involved in mediating cell cycle arrest in response to radiation-induced DNA damage. The nature and location of A-T mutations should provide insight into the function of the ATM protein and the molecular basis of this pleiotropic disease. Of 44 A-T mutations identified by us to date, 39 (89%) are expected to inactivate the ATM protein by truncating it, by abolishing correct initiation or termination of translation, or by deleting large segments. Additional mutations are four smaller in-frame deletions and insertions, and one substitution of a highly conserved amino acid at the PI 3-kinase domain. The emerging profile of mutations causing A-T is thus dominated by those expected to completely inactivate the ATM protein. ATM mutations with milder effects may result in phenotypes related, but not identical, to A-T

    Requirement of the MRN complex for ATM activation by DNA damage

    No full text
    The ATM protein kinase is a primary activator of the cellular response to DNA double-strand breaks (DSBs). In response to DSBs, ATM is activated and phosphorylates key players in various branches of the DNA damage response network. ATM deficiency causes the genetic disorder ataxia-telangiectasia (A-T), characterized by cerebellar degeneration, immunodeficiency, radiation sensitivity, chromosomal instability and cancer predisposition. The MRN complex, whose core contains the Mre11, Rad50 and Nbs1 proteins, is involved in the initial processing of DSBs. Hypomorphic mutations in the NBS1 and MRE11 genes lead to two other genomic instability disorders: the Nijmegen breakage syndrome (NBS) and A-T like disease (A-TLD), respectively. The order in which ATM and MRN act in the early phase of the DSB response is unclear. Here we show that functional MRN is required for ATM activation, and consequently for timely activation of ATM-mediated pathways. Collectively, these and previous results assign to components of the MRN complex roles upstream and downstream of ATM in the DNA damage response pathway and explain the clinical resemblance between A-T and A-TLD

    sj-docx-1-fla-10.1177_01427237241247930 – Supplemental material for Establishing guidelines for MLU measurement in an agglutinating language: An illustration of Georgian

    No full text
    Supplemental material, sj-docx-1-fla-10.1177_01427237241247930 for Establishing guidelines for MLU measurement in an agglutinating language: An illustration of Georgian by Tinatin Tchintcharauli, Nino Tsintsadze, Teona Damenia, Tamar Kalkhitashvili, Nino Doborjginidze and Sigal Uziel-Karl in First Language</p

    The Volume of Three-Dimensional Cultures of Cancer Cells In Vitro Influences Transcriptional Profile Differences and Similarities with Monolayer Cultures and Xenografted Tumors

    No full text
    Improving the congruity of preclinical models with cancer as it is manifested in humans is a potential way to mitigate the high attrition rate of new cancer therapies in the clinic. In this regard, three-dimensional (3D) tumor cultures in vitro have recently regained interest as they have been acclaimed to have higher similarity to tumors in vivo than to cells grown in monolayers (2D). To identify cancer functions that are active in 3D rather than in 2D cultures, we compared the transcriptional profiles (TPs) of two non-small cell lung carcinoma cell lines, NCI-H1650 and EBC-1 grown in both conditions to the TP of xenografted tumors. Because confluence, diameter or volume can hypothetically alter TPs, we made intra- and inter-culture comparisons using samples with defined dimensions. As projected by Ingenuity Pathway Analysis (IPA), a limited number of signal transduction pathways operational in vivo were better represented by 3D than by 2D cultures in vitro. Growth of 2D and 3D cultures as well as xenografts induced major changes in the TPs of these 3 modes of culturing. Alterations of transcriptional network activation that were predicted to evolve similarly during progression of 3D cultures and xenografts involved the following functions: hypoxia, proliferation, cell cycle progression, angiogenesis, cell adhesion, and interleukin activation. Direct comparison of TPs of 3D cultures and xenografts to monolayer cultures yielded up-regulation of networks involved in hypoxia, TGF and Wnt signaling as well as regulation of epithelial mesenchymal transition. Differences in TP of 2D and 3D cancer cell cultures are subject to progression of the cultures. The emulation of the predicted cell functions in vivo is therefore not only determined by the type of culture in vitro but also by the confluence or diameter of the 2D or 3D cultures, respectively. Consequently, the successful implementation of 3D models will require phenotypic characterization to verify the relevance of applying these models for drug development

    The tumor suppressors Ink4c and p53 collaborate independently with Patched to suppress medulloblastoma formation

    No full text
    Recurrent genetic alterations in human medulloblastoma (MB) include mutations in the sonic hedgehog (SHH) signaling pathway and TP53 inactivation (∼25% and 10% of cases, respectively). However, mouse models of MB, regardless of their initiating lesions, generally depend upon p53 inactivation for rapid onset and high penetrance. The gene encoding the cyclin-dependent kinase inhibitor p18(Ink4c) is transiently expressed in mouse cerebellar granule neuronal precursor cells (GNPs) as they exit the cell division cycle and differentiate. Coinactivation of Ink4c and p53 provided cultured GNPs with an additive proliferative advantage, either in the presence or absence of Shh, and induced MB with low penetrance but with greatly increased incidence following postnatal irradiation. In contrast, mice lacking one or two functional Ink4c alleles and one copy of Patched (Ptc1) encoding the Shh receptor rapidly developed MBs that retained wild-type p53. In tumor cells purified from double heterozygotes, the wild-type Ptc1 allele, but not Ink4c, was inactivated. Therefore, when combined with Ptc1 mutation, Ink4c is haploinsufficient for tumor suppression. Methylation of INK4C (CDKN2C) was observed in four of 23 human MBs, and p18(INK4C) protein expression was extinguished in 14 of 73 cases. Hence, p18(INK4C) loss may contribute to MB formation in children
    corecore