38 research outputs found

    Pokretljivost bakterija po inertnoj površini posredovana kapilarnim silama

    Get PDF
    Here we describe an additional type of bacterial migration in which bacterial cells migrate vertically across a non-nutritive solid surface carried by capillary forces. Unlike standard motility experiments, these were run on a glass slide inserted into a Falcon tube, partly immersed in a nutrient medium and partly exposed to air. Observations revealed that capillary forces initiated upward cell migration when biofilm was formed at the border between liquid and air. The movement was facilitated by the production of extracellular polymeric substances (EPS). This motility differs from earlier described swarming, twitching, gliding, sliding, or surfing, although these types of movements are not excluded. We therefore propose to call it “capillary movement of biofilm”. This phenomenon may be an ecologically important mode of bacterial motility on solid surfaces.Primijećen je i prikazan dosad neopisan način pokretljivosti bakterija u obliku biofilma. Pokazano je kako se bakterijske stanice iz biofilma formiranoga na razmeđi tekućine i zraka gibaju okomito po staklenom predmetnom stakalcu, inertnoj, nehranjivoj ali djelomično vlažnoj površini. Takva površina, izložena zraku, uvelike se razlikuje od površine hranjivog agara, ili od površine prekrivene hranjivim agarom, kakve se koriste u standardnim testovima za ispitivanje bakterijske pokretljivosti u biofilmu. Sudeći prema opažanjima, stanice se prvotno gibaju posredstvom kapilarnih sila, a kada se formira biofilm, stvaranje izvanstanične polimerne tvari (EPS) potiče daljnju migraciju bakterija. Takva pokretljivost opažena je kod svih testiranih a fiziološki bitno različitih bakterijskih vrsta. Kako se eksperimentalni postav značajno razlikuje od standardnih testova praćenja bakterijske pokretljivosti, kao što su rojenje (swarming), trzanje (twitching) ili klizanje po površini (gliding, sliding ili surfing), predložen je generički naziv “kapilarna pokretljivost biofilma”. Ovdje opisani fenomen mogao bi biti značajan ekološki čimbenik pokretljivosti bakterija u okolišu

    The Ebola-Glycoprotein Modulates the Function of Natural Killer Cells

    Get PDF
    The Ebola virus (EBOV) uses evasion mechanisms that directly interfere with host T-cell antiviral responses. By steric shielding of human leukocyte antigen class-1, the Ebola glycoprotein (GP) blocks interaction with T-cell receptors (TCRs), thus rendering T cells unable to attack virus-infected cells. It is likely that this mechanism could promote increased natural killer (NK) cell activity against GP-expressing cells by preventing the engagement of NK inhibitory receptors; however, we found that primary human NK cells were less reactive to GP-expressing HEK293T cells. This was manifested as reduced cytokine secretion, a reduction in NK degranulation, and decreased lysis of GP-expressing target cells. We also demonstrated reduced recognition of GP-expressing cells by recombinant NKG2D and NKp30 receptors. In accordance, we showed a reduced monoclonal antibody-based staining of NKG2D and NKp30 ligands on GP-expressing target cells. Trypsin digestion of the membrane-associated GP led to a recovery of the recognition of membrane-associated NKG2D and NKp30 ligands. We further showed that membrane-associated GP did not shield recognition by KIR2DL receptors; in accordance, GP expression by target cells significantly perturbed signal transduction through activating, but not through inhibitory, receptors. Our results suggest a novel evasion mechanism employed by the EBOV to specifically avoid the NK cell immune response

    The Natural Cytotoxicity Receptor 1 Contribution to Early Clearance of Streptococcus pneumoniae and to Natural Killer-Macrophage Cross Talk

    Get PDF
    Natural killer (NK) cells serve as a crucial first line of defense against tumors, viral and bacterial infections. We studied the involvement of a principal activating natural killer cell receptor, natural cytotoxicity receptor 1 (NCR1), in the innate immune response to S. pneumoniae infection. Our results demonstrate that the presence of the NCR1 receptor is imperative for the early clearance of S. pneumoniae. We tied the ends in vivo by showing that deficiency in NCR1 resulted in reduced lung NK cell activation and lung IFNÎł production at the early stages of S. pneumoniae infection. NCR1 did not mediate direct recognition of S. pneumoniae. Therefore, we studied the involvement of lung macrophages and dendritic cells (DC) as the mediators of NK-expressed NCR1 involvement in response to S. pneumoniae. In vitro, wild type BM-derived macrophages and DC expressed ligands to NCR1 and co-incubation of S. pneumoniae-infected macrophages/DC with NCR1-deficient NK cells resulted in significantly lesser IFNÎł levels compared to NCR1-expressing NK cells. In vivo, ablation of lung macrophages and DC was detrimental to the early clearance of S. pneumoniae. NCR1-expressing mice had more potent alveolar macrophages as compared to NCR1-deficient mice. This result correlated with the higher fraction of NCR1-ligandhigh lung macrophages, in NCR1-expressing mice, that had better phagocytic activity compared to NCR1-liganddull macrophages. Overall, our results point to the essential contribution of NK-expressed NCR1 in early response to S. pneumoniae infection and to NCR1-mediated interaction of NK and S. pneumoniae infected-macrophages and -DC

    Distinct features of the Leishmania cap-binding protein LeishIF4E2 revealed by CRISPR-Cas9 mediated hemizygous deletion.

    No full text
    Leishmania parasites cycle between sand-fly vectors and mammalian hosts adapting to alternating environments by stage-differentiation accompanied by changes in the proteome profiles. Translation regulation plays a central role in driving the differential program of gene expression since control of gene regulation in Leishmania is mostly post-transcriptional. The Leishmania genome encodes six eIF4E paralogs, some of which bind a dedicated eIF4G candidate, and each eIF4E is assumed to have specific functions with perhaps some overlaps. However, LeishIF4E2 does not bind any known eIF4G ortholog and was previously shown to comigrate with the polysomal fractions of sucrose gradients in contrast to the other initiation factors that usually comigrate with pre-initiation and initiation complexes. Here we deleted one of the two LeishIF4E2 gene copies using the CRISPR-Cas9 methodology. The deletion caused severe alterations in the morphology of the mutant cells that became round, small, and equipped with a very short flagellum that did not protrude from its pocket. Reduced expression of LeishIF4E2 had no global effect on translation and growth, unlike other LeishIF4Es; however, there was a change in the proteome profile of the LeishIF4E2(+/-) cells. Upregulated proteins were related mainly to general metabolic processes including enzymes involved in fatty acid metabolism, DNA repair and replication, signaling, and cellular motor activity. The downregulated proteins included flagellar rod and cytoskeletal proteins, as well as surface antigens involved in virulence. Moreover, the LeishIF4E2(+/-) cells were impaired in their ability to infect cultured macrophages. Overall, LeishIF4E2 does not behave like a general translation factor and its function remains elusive. Our results also suggest that the individual LeishIF4Es perform unique functions

    A Missense Variation in <i>PHACTR2</i> Associates with Impaired Actin Dynamics, Dilated Cardiomyopathy, and Left Ventricular Non-Compaction in Humans

    No full text
    Dilated cardiomyopathy (DCM) with left ventricular non-compaction (LVNC) is a primary myocardial disease leading to contractile dysfunction, progressive heart failure, and excessive risk of sudden cardiac death. Using whole-exome sequencing to investigate a possible genetic cause of DCM with LVNC in a consanguineous child, a homozygous nucleotide change c.1532G>A causing p.Arg511His in PHACTR2 was found. The missense change can affect the binding of PHACTR2 to actin by eliminating the hydrogen bonds between them. The amino acid change does not change PHACTR2 localization to the cytoplasm. The patient’s fibroblasts showed a decreased globular to fibrillary actin ratio compared to the control fibroblasts. The re-polymerization of fibrillary actin after treatment with cytochalasin D, which disrupts the actin filaments, was slower in the patient’s fibroblasts. Finally, the patient’s fibroblasts bridged a scar gap slower than the control fibroblasts because of slower and indirect movement. This is the first report of a human variation in this PHACTR family member. The knock-out mouse model presented no significant phenotype. Our data underscore the importance of PHACTR2 in regulating the monomeric actin pool, the kinetics of actin polymerization, and cell movement, emphasizing the importance of actin regulation for the normal function of the human heart

    Spatial and Chemical Surface Guidance of NK Cell Cytotoxic Activity

    No full text
    Studying how different signaling pathways spatially integrate in cells requires selective manipulation and control of different transmembrane ligand–receptor pairs at the same time. This work explores a novel method for precisely arranging two arbitrarily chosen ligands on a micron-scale two-dimensional pattern. The approach is based on lithographic patterning of Au and TiO<sub>2</sub> films, followed by their selective functionalization with Ni–nitrilotriacetic acid–histidine and biotin–avidin chemistries, respectively. The selectivity of chemical and biological functionalizations is demonstrated by X-ray photoelectron spectroscopy and immunofluorescence imaging, respectively. This approach is applied to produce the first type of bifunctional surfaces with controllably positioned ligands for activating the receptors of natural killer (NK) immune cells. NK cells were used as a model system to demonstrate the potency of the surface in guiding site-selective cell attachment and activation. Upon applying the suitable ligand or ligand combination, the surfaces guided the appropriate single- or bifunctional attachment and activation. These encouraging results demonstrate the effectiveness of the system as an experimental platform aimed at the comprehensive understanding of the immunological synapse. The great simplicity, modularity, and specificity of this approach make it applicable for a myriad of combinations of other biomolecules and applications, turning it into the “Swiss knife” of biointerfaces

    Synergistic Activity of Anticancer Polyphenols Embedded in Amphiphilic Dendrimer Nanoparticles

    No full text
    Dendritic polymer nanoparticles (NPs) are promising vehicles for drug delivery. Most dendrimer polymer NPs, however, exhibit positive surface charge which make them, in many instances, cytotoxic. We constructed noncationic, amphiphilic dendrimer NPs embedding curcumin and resveratrol, natural polyphenols exhibiting anticancer properties. The curcumin/resveratrol/dendrimer NPs both effectively shielded the embedded polyphenols and facilitated their slow release and, notably, targeted cancer cells. The experimental data trace the cancer cell toxicity of the curcumin/resveratrol/dendrimer NPs to impairment of mitochondrial functions, specifically giving rise to enhanced intracellular calcium release, inhibition of cytochrome c oxidase enzyme activity, decreased mitochondrial membrane potential, and mitochondrial membrane perturbation. Importantly, synergism between the dendrimer-NP-embedded curcumin and resveratrol was observed, as more pronounced cancer cell death and mitochondrial disruption were induced by the curcumin/resveratrol/dendrimer NPs as compared to either the freely dissolved polyphenols or amphiphilic dendrimer NPs incorporating curcumin or resveratrol separately. This work suggests that amphiphilic dendrimer NPs encapsulating curcumin and resveratrol may constitute a promising anticancer therapeutic platform
    corecore