116 research outputs found
Bottlenecks to vibrational energy flow in OCS: Structures and mechanisms
Finding the causes for the nonstatistical vibrational energy relaxation in
the planar carbonyl sulfide (OCS) molecule is a longstanding problem in
chemical physics: Not only is the relaxation incomplete long past the predicted
statistical relaxation time, but it also consists of a sequence of abrupt
transitions between long-lived regions of localized energy modes. We report on
the phase space bottlenecks responsible for this slow and uneven vibrational
energy flow in this Hamiltonian system with three degrees of freedom. They
belong to a particular class of two-dimensional invariant tori which are
organized around elliptic periodic orbits. We relate the trapping and
transition mechanisms with the linear stability of these structures.Comment: 13 pages, 13 figure
Extracting Multidimensional Phase Space Topology from Periodic Orbits
We establish a hierarchical ordering of periodic orbits in a strongly coupled
multidimensional Hamiltonian system. Phase space structures can be
reconstructed quantitatively from the knowledge of periodic orbits alone. We
illustrate our findings for the hydrogen atom in crossed electric and magnetic
fields.Comment: 4 pages, 5 figures, accepted for publication in Phys. Rev. Let
Reducing multiphoton ionization in a linearly polarized microwave field by local control
We present a control procedure to reduce the stochastic ionization of
hydrogen atom in a strong microwave field by adding to the original Hamiltonian
a comparatively small control term which might consist of an additional set of
microwave fields. This modification restores select invariant tori in the
dynamics and prevents ionization. We demonstrate the procedure on the
one-dimensional model of microwave ionization.Comment: 8 page
A Computational Procedure to Detect a New Type of High Dimensional Chaotic Saddle and its Application to the 3-D Hill's Problem
A computational procedure that allows the detection of a new type of
high-dimensional chaotic saddle in Hamiltonian systems with three degrees of
freedom is presented. The chaotic saddle is associated with a so-called
normally hyperbolic invariant manifold (NHIM). The procedure allows to compute
appropriate homoclinic orbits to the NHIM from which we can infer the existence
a chaotic saddle. NHIMs control the phase space transport across an equilibrium
point of saddle-centre-...-centre stability type, which is a fundamental
mechanism for chemical reactions, capture and escape, scattering, and, more
generally, ``transformation'' in many different areas of physics. Consequently,
the presented methods and results are of broad interest. The procedure is
illustrated for the spatial Hill's problem which is a well known model in
celestial mechanics and which gained much interest e.g. in the study of the
formation of binaries in the Kuiper belt.Comment: 12 pages, 6 figures, pdflatex, submitted to JPhys
Accuracy of the Semi--Classical Approximation: the Pullen Edmonds Hamiltonian
A test on the numerical accuracy of the semiclassical approximation as a
function of the principal quantum number has been performed for the
Pullen--Edmonds model, a two--dimensional, non--integrable, scaling invariant
perturbation of the resonant harmonic oscillator. A perturbative interpretation
is obtained of the recently observed phenomenon of the accuracy decrease on the
approximation of individual energy levels at the increase of the principal
quantum number. Moreover, the accuracy provided by the semiclassical
approximation formula is on the average the same as that provided by quantum
perturbation theory.Comment: 12 pages, 5 figures (available upon request to the authors), LaTex,
DFPD/93/TH/47, to be published in Nuovo Cimento
Recovery of Stem Cell Proliferation by Low Intensity Vibration Under Simulated Microgravity Requires LINC Complex
Mesenchymal stem cells (MSC) rely on their ability to integrate physical and spatial signals at load bearing sites to replace and renew musculoskeletal tissues. Designed to mimic unloading experienced during spaceflight, preclinical unloading and simulated microgravity models show that alteration of gravitational loading limits proliferative activity of stem cells. Emerging evidence indicates that this loss of proliferation may be linked to loss of cellular cytoskeleton and contractility. Low intensity vibration (LIV) is an exercise mimetic that promotes proliferation and differentiation of MSCs by enhancing cell structure. Here, we asked whether application of LIV could restore the reduced proliferative capacity seen in MSCs that are subjected to simulated microgravity. We found that simulated microgravity (sMG) decreased cell proliferation and simultaneously compromised cell structure. These changes included increased nuclear height, disorganized apical F-actin structure, reduced expression, and protein levels of nuclear lamina elements LaminA/C LaminB1 as well as linker of nucleoskeleton and cytoskeleton (LINC) complex elements Sun-2 and Nesprin-2. Application of LIV restored cell proliferation and nuclear proteins LaminA/C and Sun-2. An intact LINC function was required for LIV effect; disabling LINC functionality via co-depletion of Sun-1, and Sun-2 prevented rescue of cell proliferation by LIV. Our findings show that sMG alters nuclear structure and leads to decreased cell proliferation, but does not diminish LINC complex mediated mechanosensitivity, suggesting LIV as a potential candidate to combat sMG-induced proliferation loss
Small denominators, frequency operators, and Lie transforms for nearly integrable quantum spin systems
Based on the previously proposed notions of action operators and of quantum integrability, frequency operators are introduced in a fully quantum-mechanical setting. They are conceptually useful because another formulation can be given to unitary perturbation theory. When worked out for quantum spin systems, this variant is found to be formally equivalent to canonical perturbation theory applied to nearly integrable systems consisting of classical spins. In particular, it becomes possible to locate the quantum-mechanical operator-valued equivalent of the frequency denominators that may cause divergence of the classical perturbation series. The results that are established here link the concept of quantum-mechanical integrability to a technical question, namely, the behavior of specific perturbation series
Nuclear actin structure regulates chromatin accessibility
Polymerized β-actin may provide a structural basis for chromatin accessibility and actin transport into the nucleus can guide mesenchymal stem cell (MSC) differentiation. Using MSC, we show that using CK666 to inhibit Arp2/3 directed secondary actin branching results in decreased nuclear actin structure, and significantly alters chromatin access measured with ATACseq at 24 h. The ATAC-seq results due to CK666 are distinct from those caused by cytochalasin D (CytoD), which enhances nuclear actin structure. In addition, nuclear visualization shows Arp2/3 inhibition decreases pericentric H3K9me3 marks. CytoD, alternatively, induces redistribution of H3K27me3 marks centrally. Such alterations in chromatin landscape are consistent with differential gene expression associated with distinctive differentiation patterns. Further, knockdown of the non-enzymatic monomeric actin binding protein, Arp4, leads to extensive chromatin unpacking, but only a modest increase in transcription, indicating an active role for actin-Arp4 in transcription. These data indicate that dynamic actin remodeling can regulate chromatin interactions
Stochastic ionization through noble tori: Renormalization results
We find that chaos in the stochastic ionization problem develops through the
break-up of a sequence of noble tori. In addition to being very accurate, our
method of choice, the renormalization map, is ideally suited for analyzing
properties at criticality. Our computations of chaos thresholds agree closely
with the widely used empirical Chirikov criterion
Theoretical study of the absorption spectra of the lithium dimer
For the lithium dimer we calculate cross sections for absorption of radiation
from the vibrational-rotational levels of the ground X [singlet Sigma g +]
electronic state to the vibrational levels and continua of the excited A
[singlet Sigma u +] and B [singlet Pi u] electronic states. Theoretical and
experimental data are used to characterize the molecular properties taking
advantage of knowledge recently obtained from photoassociation spectroscopy and
ultra-cold atom collision studies. The quantum-mechanical calculations are
carried out for temperatures in the range from 1000 to 2000 K and are compared
with previous calculations and measurements.Comment: 20 pages, revtex, epsf, 6 fig
- …