21 research outputs found

    Hepatic Alarmins and Mitochondrial Dysfunction under Residual Hyperlipidemic Stress Lead to Irreversible NAFLD

    Get PDF
    Background and Aims: Nonalcoholic fatty liver disease (NAFLD) includes a range of progressive disorders generated by excess lipid accumulation in the liver leading to hepatic steatosis and eventually fibrosis. We aimed to identify by high performance mass spectrometry-based proteomics the main signaling pathways and liver proteome changes induced by hypercholesterolemia in a rabbit atherosclerotic model that induced high accumulation of lipids in the liver. Methods: The effect of combined lipid-lowering drugs (statins and anti-PCSK9 monoclonal antibody) were used after the interruption of the hypercholesterolemic diet to identify also the potential mediators, such as alarmins, responsible for the irreversible NAFLD build up under the hyperlipidemic sustained stress. Results: Proteomic analysis revealed a number of proteins whose abundance was altered. They were components of metabolic pathways including fatty-acid degradation, glycolysis/gluconeogenesis, and nonalcoholic fatty liver disease. Mitochondrial dysfunction indicated alteration at the mitochondrial respiratory chain level and down-regulation of NADH: ubiquinone oxidoreductase. The expression of a majority of cytochromes (P4502E1, b5, and c) were up-regulated by lipid-lowering treatment. Long-term hyperlipidemic stress, even with a low-fat diet and lipid-lowering treatment, was accompanied by alarmin release (annexins, galectins, HSPs, HMGB1, S100 proteins, calreticulin, and fibronectin) that generated local inflammation and induced liver steatosis and aggressive fibrosis (by high abundance of galectin 3, fibronectin, and calreticulin). Conclusions: The novel findings of this study were related to the residual effects of hyperlipidemic stress with consistent, combined lipid-lowering treatment with statin and inhibitor of PCSK9.publishedVersio

    Cardiac Alarmins as Residual Risk Markers of Atherosclerosis under Hypolipidemic Therapy

    Get PDF
    Increased levels of low-density lipoproteins are the main risk factor in the initiation and progression of atherosclerosis. Although statin treatment can effectively lower these levels, there is still a residual risk of cardiovascular events. We hypothesize that a specific panel of stress-sensing molecules (alarmins) could indicate the persistence of silent atherosclerosis residual risk. New Zealand White rabbits were divided into: control group (C), a group that received a high-fat diet for twelve weeks (Au), and a treated hyperlipidemic group with a lipid diet for eight weeks followed by a standard diet and hypolipidemic treatment (atorvastatin and PCSK9 siRNA-inhibitor) for four weeks (Asi). Mass spectrometry experiments of left ventricle lysates were complemented by immunologic and genomic studies to corroborate the data. The hyperlipidemic diet determined a general alarmin up-regulation tendency over the C group. A significant spectral abundance increase was measured for specific heat shock proteins, S100 family members, HMGB1, and Annexin A1. The hypolipidemic treatment demonstrated a reversed regulation trend with non-significant spectral alteration over the C group for some of the identified alarmins. Our study highlights the discriminating potential of alarmins in hyperlipidemia or following hypolipidemic treatment. Data are available via ProteomeXchange with identifier PXD035692.publishedVersio

    Regulated cell death joins in atherosclerotic plaque silent progression

    Get PDF
    Non-apoptotic regulated cell death (ferroptosis and necroptosis) leads to the release of damage-associated molecular patterns (DAMPs), which initiate and perpetuate a non-infectious inflammatory response. We hypothesize that DAMPs and non-apoptotic regulated cell death are critical players of atherosclerotic plaque progression with inadequate response to lipid-lowering treatment. We aimed to uncover the silent mechanisms that govern the existing residual risk of cardiovascular-related mortality in experimental atherosclerosis. Proteomic and genomic approaches were applied on the ascending aorta of hyperlipidemic rabbits and controls with and without lipid-lowering treatment. The hyperlipidemic animals, which presented numerous heterogeneous atherosclerotic lesions, exhibited high concentrations of serum lipids and increased lipid peroxidation oxidative stress markers. The analyses revealed the significant upregulation of DAMPs and proteins implicated in ferroptosis and necroptosis by hyperlipidemia. Some of them did not respond to lipid-lowering treatment. Dysregulation of five proteins involved in non-apoptotic regulated cell death proteins (VDAC1, VDAC3, FTL, TF and PCBP1) and nine associated DAMPs (HSP90AA1, HSP90AB1, ANXA1, LGALS3, HSP90B1, S100A11, FN, CALR, H3-3A) was not corrected by the treatment. These proteins could play a key role in the atherosclerotic silent evolution and may possess an unexplored therapeutic potential. Mass spectrometry data are available via ProteomeXchange with identifier PXD026379.publishedVersio

    Cardiac Alarmins as Residual Risk Markers of Atherosclerosis under Hypolipidemic Therapy

    Get PDF
    Increased levels of low-density lipoproteins are the main risk factor in the initiation and progression of atherosclerosis. Although statin treatment can effectively lower these levels, there is still a residual risk of cardiovascular events. We hypothesize that a specific panel of stress-sensing molecules (alarmins) could indicate the persistence of silent atherosclerosis residual risk. New Zealand White rabbits were divided into: control group (C), a group that received a high-fat diet for twelve weeks (Au), and a treated hyperlipidemic group with a lipid diet for eight weeks followed by a standard diet and hypolipidemic treatment (atorvastatin and PCSK9 siRNA-inhibitor) for four weeks (Asi). Mass spectrometry experiments of left ventricle lysates were complemented by immunologic and genomic studies to corroborate the data. The hyperlipidemic diet determined a general alarmin up-regulation tendency over the C group. A significant spectral abundance increase was measured for specific heat shock proteins, S100 family members, HMGB1, and Annexin A1. The hypolipidemic treatment demonstrated a reversed regulation trend with non-significant spectral alteration over the C group for some of the identified alarmins. Our study highlights the discriminating potential of alarmins in hyperlipidemia or following hypolipidemic treatment. Data are available via ProteomeXchange with identifier PXD035692

    Regulated cell death joins in atherosclerotic plaque silent progression

    Get PDF
    Non-apoptotic regulated cell death (ferroptosis and necroptosis) leads to the release of damage-associated molecular patterns (DAMPs), which initiate and perpetuate a non-infectious inflammatory response. We hypothesize that DAMPs and non-apoptotic regulated cell death are critical players of atherosclerotic plaque progression with inadequate response to lipid-lowering treatment. We aimed to uncover the silent mechanisms that govern the existing residual risk of cardiovascular-related mortality in experimental atherosclerosis. Proteomic and genomic approaches were applied on the ascending aorta of hyperlipidemic rabbits and controls with and without lipid-lowering treatment. The hyperlipidemic animals, which presented numerous heterogeneous atherosclerotic lesions, exhibited high concentrations of serum lipids and increased lipid peroxidation oxidative stress markers. The analyses revealed the significant upregulation of DAMPs and proteins implicated in ferroptosis and necroptosis by hyperlipidemia. Some of them did not respond to lipid-lowering treatment. Dysregulation of five proteins involved in non-apoptotic regulated cell death proteins (VDAC1, VDAC3, FTL, TF and PCBP1) and nine associated DAMPs (HSP90AA1, HSP90AB1, ANXA1, LGALS3, HSP90B1, S100A11, FN, CALR, H3-3A) was not corrected by the treatment. These proteins could play a key role in the atherosclerotic silent evolution and may possess an unexplored therapeutic potential. Mass spectrometry data are available via ProteomeXchange with identifier PXD026379

    Additional file 4: Figure S2. of Alteration of actin dependent signaling pathways associated with membrane microdomains in hyperlipidemia

    No full text
    Gene ontology details of detergent resistant membrane microdomains proteins. Data distribution based on: Cellular Component (a), Biological Process (b) and Molecular Function (c). Data expressed as mean values ± SD, following the analysis of the biological replicates. (DOCX 654 kb

    Short‐Term Blockade of Pro‐Inflammatory Alarmin S100A9 Favorably Modulates Left Ventricle Proteome and Related Signaling Pathways Involved in Post‐Myocardial Infarction Recovery

    No full text
    Prognosis after myocardial infarction (MI) varies greatly depending on the extent of dam-aged area and the management of biological processes during recovery. Reportedly, the inhibition of the pro‐inflammatory S100A9 reduces myocardial damage after MI. We hypothesize that a S100A9 blockade induces changes of major signaling pathways implicated in post‐MI healing. Mass spectrometry‐based proteomics and gene analyses of infarcted mice left ventricle were performed. The S100A9 blocker (ABR‐23890) was given for 3 days after coronary ligation. At 3 and 7 days post‐ MI, ventricle samples were analyzed versus control and Sham‐operated mice. Blockade of S100A9 modulated the expressed proteins involved in five biological processes: leukocyte cell–cell adhesion, regulation of the muscle cell apoptotic process, regulation of the intrinsic apoptotic signaling pathway, sarco-mere organization and cardiac muscle hypertrophy. The blocker induced regulation of 36 proteins inter-acting with or targeted by the cellular tumor antigen p53, prevented myocardial compensatory hy-pertrophy, and reduced cardiac markers of post‐ischemic stress. The blockade effect was prominent at day 7 post‐MI when the quantitative features of the ventricle proteome were closer to controls. Blockade of S100A9 restores key biological processes altered post‐MI. These processes could be val-uable new pharmacological targets for the treatment of ischemic heart. Mass spectrometry data are available via ProteomeXchange with identifier PXD033683
    corecore