67 research outputs found

    Direct in situ GDD measurement in optical coating process

    Get PDF
    In the presented work a fast frequency domain measurement system to determine group delay (GD) and group delay dispersion (GDD) of optical coatings is proposed. The measurements are performed in situ directly on moving substrates during the thin film coating process. The method is based on a Michelson interferometer, which is equipped with a high power broad band light source and a fast spectrometer. Especially for the production of chirped mirrors it is advantageous to obtain group delay and group delay dispersion data of the last layers. This additional information allows for online corrections of coating errors to enhance the precision of complex interference filters for short pulse applications. © 2015 SPIE

    Cytokine Effects on Gap Junction Communication and Connexin Expression in Human Bladder Smooth Muscle Cells and Suburothelial Myofibroblasts

    Get PDF
    BACKGROUND: The last decade identified cytokines as one group of major local cell signaling molecules related to bladder dysfunction like interstitial cystitis (IC) and overactive bladder syndrome (OAB). Gap junctional intercellular communication (GJIC) is essential for the coordination of normal bladder function and has been found to be altered in bladder dysfunction. Connexin (Cx) 43 and Cx45 are the most important gap junction proteins in bladder smooth muscle cells (hBSMC) and suburothelial myofibroblasts (hsMF). Modulation of connexin expression by cytokines has been demonstrated in various tissues. Therefore, we investigate the effect of interleukin (IL) 4, IL6, IL10, tumor necrosis factor-alpha (TNFα) and transforming growth factor-beta1 (TGFβ1) on GJIC, and Cx43 and Cx45 expression in cultured human bladder smooth muscle cells (hBSMC) and human suburothelial myofibroblasts (hsMF). METHODOLOGY/PRINCIPAL FINDINGS: HBSMC and hsMF cultures were set up from bladder tissue of patients undergoing cystectomy. In cytokine stimulated cultured hBSMC and hsMF GJIC was analyzed via Fluorescence Recovery after Photo-bleaching (FRAP). Cx43 and Cx45 expression was assessed by quantitative PCR and confocal immunofluorescence. Membrane protein fraction of Cx43 and Cx45 was quantified by Dot Blot. Upregulation of cell-cell-communication was found after IL6 stimulation in both cell types. In hBSMC IL4 and TGFβ1 decreased both, GJIC and Cx43 protein expression, while TNFα did not alter communication in FRAP-experiments but increased Cx43 expression. GJ plaques size correlated with coupling efficacy measured, while Cx45 expression did not correlate with modulation of GJIC. CONCLUSIONS/SIGNIFICANCE: Our finding of specific cytokine effects on GJIC support the notion that cytokines play a pivotal role for pathophysiology of OAB and IC. Interestingly, the effects were independent from the classical definition of pro- and antiinflammatory cytokines. We conclude, that connexin regulation involves genomic and/or post-translational events, and that GJIC in hBSMC and hsMF depend of Cx43 rather than on Cx45

    Improved LIDT values for dielectric dispersive compensating mirrors applying ternary composites

    Get PDF
    The present contribution is addressed to an improved method to fabricate dielectric dispersive compensating mirrors (CMs) with an increased laser induced damage threshold (LIDT) by the use of ternary composite layers. Taking advantage of a novel in-situ phase monitor system, it is possible to control the sensitive deposition process more precisely. The study is initiated by a design synthesis, to achieve optimum reflection and GDD values for a conventional high low stack (HL)n. Afterwards the field intensity is analyzed, and layers affected by highest electric field intensities are exchanged by ternary composites of TaxSiyOz. Both designs have similar target specifications whereby one design is using ternary composites and the other one is distinguished by a (HL)n. The first layers of the stack are switched applying in-situ optical broad band monitoring in conjunction with a forward re-optimization algorithm, which also manipulates the layers remaining for deposition at each switching event. To accomplish the demanded GDD-spectra, the last layers are controlled by a novel in-situ white light interferometer operating in the infrared spectral range. Finally the CMs are measured in a 10.000 on 1 procedure according to ISO 21254 applying pulses with a duration of 130 fs at a central wavelength of 775 nm to determine the laser induced damage threshold. © 2016 SPIE. Downloading of the abstract is permitted for personal use only.DFG/EXC/QUESTVolkswagen StiftungBMBF/13N1155

    Precise fabrication of ultra violet dielectric dispersion compensating mirrors

    Get PDF
    The present contribution is concentrated on an improved method to manufacture dielectric dispersion compensating mirrors in the ultra violet (UV) range by applying a novel online phase monitoring device. This newly developed measurement tool monitors the group delay (GD) and group delay dispersion (GDD) of the electromagnetic field in situ during the deposition of the layer system. Broad band monitoring of the phase enhances the accuracy in the near infrared spectral range (NIR), significantly. In this study, the correlation of the GDD in the NIR and in the UV spectral range is investigated. A design synthesis is introduced to achieve optimum reflection and GDD target values in the UV and NIR. This requires a similar behavior of both bands according to deposition errors, to guarantee switching off the UV GDD target band proper, while monitoring the GDD in the NIR spectral range. The synthesis results in a design, characterized by a GDD of -100fs2±20fs2 between 330nm and 360nm in the UV and by -450fs2±10fs2 within 820nm to 870nm in the NIR. The fabricated sample, applying an ion beam sputtering process, consists of a 9μm layer stack of Hafnium oxide and Silicon dioxide. The first layers of the stack are switched and controlled by a conventional in situ spectrometric broad band monitoring in conjunction with a forward re-optimization algorithm, which also manipulates the layers remaining for deposition at each switching event. To accomplish the demanded GDD-spectra, the last layers are controlled by the novel in situ GDD monitor. © 2015 SPIE.DFG/EXC/QUESTDFG/13N1155

    implications for joint remodeling in AS

    Get PDF
    Introduction In ankylosing spondylitis (AS), joint remodeling leading to joint ankylosis involves cartilage fusion. Here, we analyzed whether chondrocyte hypertrophy is involved in cartilage fusion and subsequent joint remodeling in AS. Methods We assessed the expression of chondrocyte hypertrophy markers runt-related transcription factor 2 (Runx2), type X collagen (COL10), matrix metalloproteinase 13 (MMP13), osteocalcin and beta-catenin and the expression of positive bone morphogenic proteins (BMPs) and negative regulators (dickkopf-1 (DKK-1)), sclerostin, (wingless inhibitory factor 1 (wif-1)) of chondrocyte hypertrophy in the cartilage of facet joints from patients with AS or osteoarthritis (OA) and from autopsy controls (CO) by immunohistochemistry. Sex determining region Y (SRY)-box 9 (Sox9) and type II collagen (COL2) expression was assessed as indicators of chondrocyte integrity and function. Results The percentage of hypertrophic chondrocytes expressing Runx2, COL10, MMP13, osteocalcin or beta-catenin was significantly increased in OA but not in AS joints compared to CO joints. Frequencies of sclerostin-positive and DKK-1-positive chondrocytes were similar in AS and CO. In contrast, wif-1- but also BMP-2- and BMP-7-expressing and Sox9-expressing chondrocytes were drastically reduced in AS joints compared to CO as well as OA joints whereas the percentage of COL2-expressing chondrocytes was significantly higher in AS joints compared to CO joints. Conclusions We found no evidence for chondrocyte hypertrophy within hyaline cartilage of AS joints even in the presence of reduced expression of the wnt inhibitor wif-1 suggesting that chondrocyte hypertrophy is not a predominant pathway involved in joint fusion and remodeling in AS. In contrast, the reduced expression of Sox9, BMP-2 and BMP-7 concomitantly with induced COL2 expression rather point to disturbed cartilage homeostasis promoting cartilage degeneration in AS

    Palmitate Induced IL-6 and MCP-1 Expression in Human Bladder Smooth Muscle Cells Provides a Link between Diabetes and Urinary Tract Infections

    Get PDF
    Therefore we studied the effects of the free fatty acid palmitate and bacterial lipopolysaccharide (LPS) on interleukin-6 (IL-6) and monocyte chemotactic protein-1 (MCP-1) expression and secretion in cultured human bladder smooth muscle cells (hBSMC).Biopsies were taken from patients undergoing cystectomy due to bladder cancer. Palmitate or LPS stimulated hBSMC were analysed for the production and secretion of the IL-6, gp80, gp80soluble, gp130, MCP-1, pSTAT3, SOCS3, NF-κB and SHP2 by quantitative PCR, ELISA, Western blotting, and confocal immunofluorescence. In signal transduction inhibition experiments we evaluated the involvement of NF-κB and MEK1 in IL-6 and MCP-1 regulation. Palmitate upregulates IL-6 mRNA expression and secretion via NF-κB dependent pathways in a concentration- and time-dependent manner. MCP-1 was moderately upregulated by palmitate but was strongly upregulated by LPS involving NF-κB and MEK1 dependent pathways. Soluble IL-6 receptor (gp80soluble) was downregulated by palmitate and LPS, while membrane-bound gp80 was moderately upregulated. LPS increased SOCS3 and SHP2, whereas palmitate only induced SOCS3. Secondary finding: most of the IL-6 is secreted.Bacterial infection (LPS) or metabolic alterations (palmitate) have distinct effects on IL-6 expression in hBSMC, (i) short term LPS induced autocrine JAK/STAT signaling and (ii) long-term endocrine regulation of IL-6 by palmitate. Induction of IL-6 in human bladder smooth muscle cells by fatty acids may represent a pathogenetic factor underlying the higher frequency and persistence of urinary tract infections in patients with metabolic diseases

    Surgical Management of the Axilla in Clinically Node-Positive Breast Cancer Patients Converting to Clinical Node Negativity through Neoadjuvant Chemotherapy : Current Status, Knowledge Gaps, and Rationale for the EUBREAST-03 AXSANA Study

    Get PDF
    In the last two decades, surgical methods for axillary staging in breast cancer patients have become less extensive, and full axillary lymph node dissection (ALND) is confined to selected patients. In initially node-positive patients undergoing neoadjuvant chemotherapy, however, the optimal management remains unclear. Current guidelines vary widely, endorsing different strategies. We performed a literature review on axillary staging strategies and their place in international recommendations. This overview defines knowledge gaps associated with specific procedures, summarizes currently ongoing clinical trials that address these unsolved issues, and provides the rationale for further research. While some guidelines have already implemented surgical de-escalation, replacing ALND with, e.g., sentinel lymph node biopsy (SLNB) or targeted axillary dissection (TAD) in cN+ patients converting to clinical node negativity, others recommend ALND. Numerous techniques are in use for tagging lymph node metastasis, but many questions regarding the marking technique, i.e., the optimal time for marker placement and the number of marked nodes, remain unanswered. The optimal number of SLNs to be excised also remains a matter of debate. Data on oncological safety and quality of life following different staging procedures are lacking. These results provide the rationale for the multinational prospective cohort study AXSANA initiated by EUBREAST, which started enrollment in June 2020 and aims at recruiting 3000 patients in 20 countries (NCT04373655; Funded by AGO-B, Claudia von Schilling Foundation for Breast Cancer Research, AWOgyn, EndoMag, Mammotome, and MeritMedical)
    corecore