20 research outputs found

    Intensity-Duration Relation in the Bartlett-Lewis Rectangular Pulse Model

    Get PDF
    For several hydrological modelling tasks precipitation time series with a high (sub-daily) resolution are indispensable. This data is, however, not always available and thus replaced by model data. A canonical class of stochastic models for sub-daily precipitation is the class of Poisson cluster processes, e.g. the Bartlett-Lewis rectangular pulse model (BLRPM). The BLRPM has been shown to be able to well reproduce certain characteristics found in observations. Our focus is on intensity-duration relationship which are of particular importance in the context of hydrological modelling. We analyse several high resolution precipitation time series (5min) from Berlin and derive empirical intensity-duration relations for several return levels of intensities (intensity-duration-frequency curves, IDF curves). In a second step, we investigate to what extend the variants of a BLRPM are able to reproduce these relations (i.e. the IDF curves) for different situations (e.g., seasons) and for the various return-levels of intensities. By means of a sensitivity study with the BLRPM, we investigate to what extend the ability to reproduce the intensity-duration relationships is related to certain relations between the model parameters. Such relations are typically useful to reduce the complexity of the model and thus robustify and facilitate parameter estimation

    Application of a Cellular Automaton Method to Model the Structure Formation in Soils Under Saturated Conditions: A Mechanistic Approach

    Get PDF
    Soil functions are closely related to the structure of soil microaggregates. Yet, the mechanisms controlling the establishment of soil structure are diverse and partly unknown. Hence, the understanding of soil processes and functions requires the connection of the concepts on the formation and consolidation of soil structural elements across scales that are hard to observe experimentally. At the bottom level, the dynamics of microaggregate development and restructuring build the basis for transport phenomena at the continuum scale. By modeling the interactions of specific minerals and/or organic matter, we aim to identify the mechanisms that control the evolution of structure and establishment of stationary aggregate properties. We present a mechanistic framework based on a cellular automaton model to simulate the interplay between the prototypic building units of soil microaggregates quartz, goethite, and illite subject to attractive and repulsive electrostatic interaction forces. The resulting structures are quantified by morphological measures. We investigated shielding effects due to charge neutralization and the aggregate growth rate in response to the net system charge. We found that the fraction as well as the size of the interacting oppositely charged constituents control the size, shape, and amount of occurring aggregates. Furthermore, the concentration in terms of the liquid solid ratio has been shown to increase the aggregation rate. We further adopt the model for an assessment of the temporal evolution of aggregate formation due to successive formation of particle dimers at early stages in comparison to higher order aggregates at later stages. With that we show the effect of composition, charge, size ratio, time, and concentration on microaggregate formation by the application of a mechanistic model which also provides predictions for soil aggregation behavior in case an observation is inhibited by experimental limitations

    X-Ray Scattering at FeCo(001) Surfaces and the Crossover between Ordinary and Normal Transitions

    Full text link
    In a recent experiment by Krimmel et al. [PRL 78, 3880 (1997)], the critical behavior of FeCo near a (001) surface was studied by x-ray scattering. Here the experimental data are reanalyzed, taking into account recent theoretical results on order-parameter profiles in the crossover regime between ordinary and normal transitions. Excellent agreement between theoretical expectations and the experimental results is found.Comment: 9 pages, Latex, 1 PostScript figure, to be published in Phys.Rev.

    Meeting User Needs in Vehicle Automation

    Get PDF
    This paper gives an overview of the results of the German national project AutoAkzept. The objective of the project was to develop solutions for the design of automated vehicles that promote the development of trust and thus acceptance for connected, cooperative, and automated mobility by reducing or even preventing subjective uncertainties and associated negative experiences. To this end, AutoAkzept developed technological building blocks for the assessment of activities and states of users of automated vehicles, the creation and application of individual user profiles for the optimization of system adaptation to users as well as strategies for adapting the behavior of automated vehicles in terms of information transfer, interior set-up, routing, and driving style selection. In developing these solutions, the project focused on the essential needs of users of automated systems. These needs should be considered in the conception and design of automated vehicles as well as in their operational use

    Das Ende der Industrieforschung der DDR: Erfahrungen, Probleme und Perspektiven von in der Industrieforschung Beschaeftigten unter marktwirtschaftlichen Bedingungen

    No full text
    SIGLEAvailable from Bibliothek des Instituts fuer Weltwirtschaft, ZBW, Duesternbrook Weg 120, D-24105 Kiel C 187000 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    Global Dynamic Response of a Medium-Sized Floating Offshore Wind Turbine with Stall Regulation

    No full text
    In this paper, a two-bladed medium-sized floating wind turbine with variable speed and power regulation by stall is studied. For floating offshore wind turbines, the major challenges are related to the dynamical behavior of the system in response to combined wind and wave loading. Especially for smaller systems, the coupling of aerodynamic and wave forces may lead to large amplitude motions. Coupled aero-hydro-servo-elastic simulations are carried out in OpenFAST. The goal of the study is to investigate the global dynamic response of the hypothetical wind turbine with stall regulation. Stall regulation concept is proposed and the structural loads are computed and results are presented and discussed

    Results of Closed-Flow Column Experiments (zip-archive 2.3 MB)

    No full text
    The identification of transport parameters by inverse modeling often suffers from equifinality or parameter correlation when models are fitted to observations of the solute breakthrough in column outflow experiments. This parameters uncertainty can be approached by the application of multiple experimental designs such as column experiments in open-flow mode and the recently proposed closed-flow mode. Latter are characterized by the recirculation of the column effluent into the solution supply vessel that feeds the inflow. Depending on the experimental conditions, the solute concentration in the solution supply vessel and the effluent follows a damped sinusoidal oscillation. As a result, the closed-flow experiment provides additional observables in the breakthrough curve. The evaluation of these emergent features allows intrinsic control over boundary conditions and impacts the uncertainty of parameters in inverse modeling. We present a comprehensive sensitivity analysis to illustrate the potential application of closed-flow experiments. We show that the sensitivity with respect to the apparent dispersion can be controlled by the experimenter leading to a decrease in parameter uncertainty as compared to classical experiments by an order of magnitude for optimal settings. With these finding we are also able to reduce the equifinality found for situations, where rate-limited interactions impede a proper determination of the apparent dispersion and rate coefficients. Furthermore, we show the expected breakthrough curve for equilibrium and kinetic sorption, the latter showing strong similarities to the behavior found for completely mixed batch reactor experiments. This renders the closed-flow mode a useful complementary approach to classical column experiments
    corecore