43 research outputs found

    High-Dimensional Single-Cell Mapping of Central Nervous System Immune Cells Reveals Distinct Myeloid Subsets in Health, Aging, and Disease

    Get PDF
    Individual reports suggest that the central nervous system (CNS) contains multiple immune cell types with diverse roles in tissue homeostasis, immune defense, and neurological diseases. It has been challenging to map leukocytes across the entire brain, and in particular in pathology, where phenotypic changes and influx of blood-derived cells prevent a clear distinction between reactive leukocyte populations. Here, we applied high-dimensional single-cell mass and fluorescence cytometry, in parallel with genetic fate mapping systems, to identify, locate, and characterize multiple distinct immune populations within the mammalian CNS. Using this approach, we revealed that microglia, several subsets of border-associated macrophages and dendritic cells coexist in the CNS at steady state and exhibit disease-specific transformations in the immune microenvironment during aging and in models of Alzheimer's disease and multiple sclerosis. Together, these data and the described framework provide a resource for the study of disease mechanisms, potential biomarkers, and therapeutic targets in CNS disease

    Pericytes regulate vascular immune homeostasis in the CNS.

    Full text link
    Pericytes regulate the development of organ-specific characteristics of the brain vasculature such as the blood-brain barrier (BBB) and astrocytic end-feet. Whether pericytes are involved in the control of leukocyte trafficking in the adult central nervous system (CNS), a process tightly regulated by CNS vasculature, remains elusive. Using adult pericyte-deficient mice (Pdgfb ret/ret ), we show that pericytes limit leukocyte infiltration into the CNS during homeostasis and autoimmune neuroinflammation. The permissiveness of the vasculature toward leukocyte trafficking in Pdgfb ret/ret mice inversely correlates with vessel pericyte coverage. Upon induction of experimental autoimmune encephalomyelitis (EAE), pericyte-deficient mice die of severe atypical EAE, which can be reversed with fingolimod, indicating that the mortality is due to the massive influx of immune cells into the brain. Additionally, administration of anti-VCAM-1 and anti-ICAM-1 antibodies reduces leukocyte infiltration and diminishes the severity of atypical EAE symptoms of Pdgfb ret/ret mice, indicating that the proinflammatory endothelium due to absence of pericytes facilitates exaggerated neuroinflammation. Furthermore, we show that the presence of myelin peptide-specific peripheral T cells in Pdgfb ret/ret ;2D2 tg mice leads to the development of spontaneous neurological symptoms paralleled by the massive influx of leukocytes into the brain. These findings indicate that intrinsic changes within brain vasculature can promote the development of a neuroinflammatory disorder

    Recovery index, attentiveness and state of memory after xenon or isoflurane anaesthesia: a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Performance of patients immediately after anaesthesia is an area of special interest and so a clinical trial was conducted to compare Xenon with Isoflurane anaesthesia. In order to assess the early cognitive recovery the syndrome short test (SST) according to Erzigkeit (Geromed GmbH) was applied.</p> <p>Methods</p> <p>ASA I and II patients undergoing long and short surgical interventions were randomised to receive either general anaesthesia with Xenon or Isoflurane. The primary endpoint was the validated SST which covering memory disturbances and attentiveness. The test was used on the day prior to intervention, one and three hours post extubation. The secondary endpoint was the recovery index (RI) measured after the end of the inhalation of Xenon or Isoflurane. In addition the Aldrete score was evaluated up to 180 min. On the first post-operative day the patients rated the quality of the anaesthetic using a scoring system from 1-6.</p> <p>Results</p> <p>The demographics of the groups were similar. The sum score of the SST delivered a clear trend one hour post extubation and a statistically significant superiority for Xenon three hours post extubation (p < 0.01). The RI likewise revealed a statistically significant superiority of Xenon 5 minutes post extubation (p < 0.01). The Aldrete score was significantly higher for 45 min. The scoring system results were also better after Xenon anaesthesia (p < 0.001).</p> <p>Conclusions</p> <p>The results show that recovery from anaesthesia and the early return of post-operative cognitive functions are significantly better after Xenon anaesthesia compared to Isoflurane. The results of the RI for Xenon are similar with the previously published results.</p> <p>Trial Registration</p> <p>The trial was registered with the number ISRCTN01110844 <url>http://www.controlled-trials.com/isrctn/pf/01110844</url>.</p

    Competition and moral behavior: A meta-analysis of forty-five crowd-sourced experimental designs

    Get PDF

    Non-Standard Errors

    Get PDF
    In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty: Non-standard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for better reproducible or higher rated research. Adding peer-review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants

    The Development of Brain Macrophages and Their Requirement for TGF-β1

    Full text link
    Central nervous system (CNS) macrophages comprise parenchymal microglia and border-associated macrophages (BAMs) residing in the meninges, the choroid plexus and the perivascular spaces. With the exception of the more heterogeneous choroid plexus macrophages, they predominantly emerge from early erythro-myeloid progenitor cells (EMPs) in the yolk sac (YS). Whether these locally distinct brain macrophages share a developmental program or arise from individual predefined pathways is a matter of debate. Here, we identified two phenotypically, transcriptionally and locally distinct brain macrophage populations throughout development, giving rise to microglia and BAMs. Two separate macrophage populations were already distinguishable in the YS prior to their seeding of the brain suggesting an early segregation of progenitor cells towards two independent lineages. Utilizing numerous fate mapping systems, we demonstrate that in contrast to microglia, the pool of embryonic BAMs in the choroid plexus and the meninges was partly and gradually replaced by precursors from the same origin, but distinct by their late commitment. We found that the differentiation and proliferation of microglia was dependent on the receptor for TGF-β at all stages of embryonic development but not at postnatal stages whereas the genesis and maturation of BAMs occurred entirely independently of this cytokine. Virtually all brain-resident cells in the developing embryo expressed TGF-β1 at different levels. Collectively, our data show that developing parenchymal and non-parenchymal brain macrophages are separate entities in terms of ontogeny, gene expression profiles and requirement for TGF-β1

    Checking macrophages at the border

    Full text link

    Monocytes promote UV‐induced epidermal carcinogenesis

    Full text link
    Mononuclear phagocytes consisting of monocytes, macrophages, and DCs play a complex role in tumor development by either promoting or restricting tumor growth. Cutaneous squamous cell carcinoma (cSCC) is the second most common nonmelanoma skin cancer arising from transformed epidermal keratinocytes. While present at high numbers, the role of tumor-infiltrating and resident myeloid cells in the formation of cSCC is largely unknown. Using transgenic mice and depleting antibodies to eliminate specific myeloid cell types in the skin, we investigated the involvement of mononuclear phagocytes in the development of UV-induced cSCC in K14-HPV8-E6 transgenic mice. Although resident Langerhans cells were enriched in the tumor, their contribution to tumor formation was negligible. Equally, dermal macrophages were dispensable for the development of cSCC. In contrast, mice lacking circulating monocytes were completely resistant to UV-induced cSCC, indicating that monocytes promote tumor development. Collectively, these results demonstrate a critical role for classical monocytes in the initiation of skin cancer
    corecore