55 research outputs found
Behaviour-dependent predation risk in swimming zooplankters
Background: The survival of zooplanktonic organisms is determined by their capability of moving in a fluid environment, trading off between the necessities of finding prey and avoiding predators. In previous numerical experiments, we concentrated on the relationship between natatorial modality and encounter success of a virtual copepod swimming in the presence of prey distributed either in patches or uniformly in the environment. Results: In this contribution, we extend this simulation framework to the encounter with chaetognaths, the primary copepod predators, considering different motion rules as a proxy of different swimming strategies and looking at the influence of the concentration of predators and the size of their detection radius in posing a risk on copepod survival. The outcomes of our simulations indicate that more convoluted trajectories are more vulnerable to predator encounter while straighter motions reduce predation risk. Conclusions: Our results are then complemented with those obtained in our previous studies to perform a general cost-benefit analysis of zooplankton motion
Wintertime transport processes in the Gulf of Naples investigated by HF radar measurements of surface currents
Transport processes play a fundamental role in regulating the water renewal in coastal systems. The Gulf of Naples (Southern Tyrrhenian Sea) is a highly urbanised area, receiving pollutant discharges and terrestrial inputs that
may reside inside the basin. For this reason, understanding the processes governing coast-offshore transport is of paramount importance for the welfare of the ecosystem
and the sustainable exploitation of environmental resources. In this work, we analyse the wind-driven transport over lags of three days in winter reconstructing
the basin scale surface circulation by means of
High-Frequency radars and evaluating its dependence on wind circulation. Simulations of particle exchange between a
coastal and an offshore area have been carried out, outlining the strong relationship between particle fate and circulation structures. Results are interpreted in terms of
residence times and possible aggregative areas in the Gulf of Naples
Spreading factors of a globally invading coastal copepod
The Mediterranean Sea is one of the areas most affected by alien invasions, which are continuously increasing also due to intense human activities and environmental changes that favor the introduction of species previously unable to colonize the basin. This is the case of the copepods of the genus Pseudodiaptomus, first described in the Indian Ocean and considered one of the most resistant to unfavorable conditions but never recorded in the Mediterranean until 2011 though present in adjacent seas. Pseudodiaptomus marinus, in particular, is common in shallow marine-brackish waters and is one of the species often found in ballast waters and in aquaculture plants. Native of Japan, it has started spreading since 1950s and its populations have established in several harbours, eutrophic inlets and lagoons along the coasts of the Pacific and Indian Oceans. In the last few years, P. marinus has been increasingly reported in European Seas (Mediterranean Sea and North Sea). In this paper, we review the invasion history of this species with a special emphasis on its records in the Mediterranean Sea, and its occurrence and establishment in Sicilian waters. We also compare the biological traits and population dynamics of P. marinus with those of other representative of the genus and discuss about the possible mechanisms of introduction in new environments. Aim of our work is to understand the reasons of successful invasion of P. marinus and the environmental and biological factors that may lead to its further biogeographic expansion
HF Radar Measurements of Surface Waves in the Gulf of Naples (Southeastern Tyrrhenian Sea): Comparison With Hindcast Results at Different Scales
HF radar systems wave measurements are evaluated against numerical simulations in the Gulf of Naples (Southeastern Tyrrhenian Sea). Wave measurements are obtained from three CODAR SeaSonde HF radars installed along the coast of the Gulf of Naples. The numerical models employed are WavewatchIII, implemented on a regional scale with a resolution of about 10 km in longitude and latitude in the whole Mediterranean Sea, and SWAN, implemented with a 200 m resolution in the area of interest. Numerical simulations are also validated against experimental data acquired by a buoy installed offshore the Gulf of Naples. The agreement between HF radar measurements and model hindcasts is evaluated through the estimate of statistical error indices for the main wave characteristics (significant wave height, mean period, and mean direction). The consistency between wave parameters retrieved by HF radars and hindcasted by the models opens the way to future integration of the two systems as well as to the utilization of HF radar wave parameters that could be envisaged for data assimilation in wave models
An integrated reconstruction of the multiannual wave pattern in the gulf of naples (South-Eastern Tyrrhenian Sea, Western Mediterranean Sea)
Surface gravity waves retrieved by a network of HF (High Frequency) radars and measured in situ by an ADCP (Acoustic Doppler Current Profiler) current meter connected to an elastic beacon were used to carry out a multiple-year characterization of the wave field of the Gulf of Naples (south-eastern Tyrrhenian Sea, western Mediterranean). The aim of the work was to create a climatology of the study area and to demonstrate the potential of an integrated platform for coastal studies. The patterns recorded by the different instruments were in agreement with the wave climatology of the southern Tyrrhenian Sea as well as with previous scores for the same area. The results presented in this work also highlight seasonal and interannual consistency in the wave patterns for each site. In a wider context, this study demonstrates the potential of HF radars as long-term monitoring tools of the wave field in coastal basins, and supports the development of integrated observatories to address large-scale scientific challenges such as coastal ocean dynamics and the impact of global change on the local dynamics
Evaluation of HF-radar wave measures in the Gulf of Naples
HF-radar systems are commonly employed for detecting the upper sea currents. Nevertheless, the signal of such systems can be further post-processed for characterizing as well the wave characteristics, though this is a recent application whose reliability has not been yet exhaustively investigated. In this work, we evaluate HF-radar measures of significant wave height, wave mean period and incident direction against the outcomes of two numerical models previously validated. The comparison is developed in the Gulf of Naples (hereinafter GoN), taking advantage of three antennas placed in the locations of Castellamare di Stabia, Portici and Sorrento. First, a wave hindcast defined on a regional scale is employed; then, wave data are down-scaled through a local model defined over a finer resolution (local scale). The agreement between the systems is evaluated through statistical error indexes. Results show good consistency, leaving room for deepening the use of radars for wave data collection
ITS2 in calanoid copepods: reconstructing phylogenetic relationships and identifying a newly introduced species in the Mediterranean
Phylogenetic inference and molecular taxonomy are becoming increasingly important approaches to classical morphological systematics and marine ecology. The number of molecular markers suitable for such goals is quite high, but general use restricts the list to a few of them, mainly mitochondrial (namely cytochrome c oxidase subunit I, COI and Cytochrome b), especially in copepods. The ribosomal cistronic regions have been widely used for broad phylogenetic analyses in different taxa. Among them, the internal transcribed spacers (ITS rDNA) are powerful tools for phylogenetic reconstructions at the different taxonomic levels, although not yet extensively used for copepods. In the present work, we tested the suitability of ITS2 rDNA marker to reconstruct the phylogenetic relationships of calanoid copepods using sequences retrieved from GenBank, complementing the phylogenetic positions of the species studied with their morphological and ecological traits. Through ITS2 rDNA we provided the first molecular evidence for the invasive calanoid Pseudodiaptomus marinus from the Mediterranean Sea (Lake Faro, Sicily, Italy), and compared it with the GenBank ITS2 sequences for P. marinus from Korea and other calanoid species. The divergence of the sequences of our P. marinus from those of Korean specimens was quite prominent (4.4%) and allowed us to hypothesise either a new forma living in the Mediterranean or a cryptic species. This study highlights the appropriateness of ITS2 for phylogenetic reconstructions and species identification, as well as for barcoding, meta-barcoding and phylogeographic approaches, and evidences the need for a more thorough knowledge of ribosomal regions in copepods from different sites
Wind direction data from a coastal HF radar system in the gulf of naples (central mediterranean sea)
Results on the accuracy of SeaSonde High Frequency (HF) radar wind direction measurements in the Gulf of Naples (Southern Tyrrhenian Sea, Central Mediterranean Sea) are here presented. The investigation was carried out for a winter period (2 February-6 March) and for one summer month (August) of the reference year 2009. HF radar measurements were compared with in situ recordings from a weather station and with model data, with the aim of resolving both small scale and large scale dynamics. The analysis of the overall performance of the HF radar system in the Gulf of Naples shows that the data are reliable when the wind speed exceeds a 5 m/s threshold. Despite such a limitation, this study confirms the potentialities of these systems as monitoring platforms in coastal areas and suggests further efforts towards their improvement
The distribution of Pseudodiaptomus marinus in European and neighbouring waters —A rolling review
Among non-native copepods, the calanoid Pseudodiaptomus marinus Sato, 1913 is the species probably spreading at the fastest pace in European and neighbouring waters since its first record in the Adriatic Sea in 2007. In this contribution, we provide an update on the distribution of P. marinus in the Mediterranean and Black Seas, along the Atlantic coasts of Europe, in the English Channel and in the southern North Sea. Starting from a previous distribution overview, we include here original and recently (2019–2023) published data to show the novel introduction of this species in different geographical areas, and its secondary spreading in already colonised regions. The picture drawn in this work confirms the strong ability of P. marinus to settle in environments characterised by extremely diverse abiotic conditions, and to take advantage of different vectors of introduction. The data presented allow speculations on realistic future introductions of P. marinus and on the potential extension of its distribution rang
- …