885 research outputs found
The Bring your own device conundrum for organizations and investigators: An examination of the policy and legal concerns in light of investigatory challenges
In recent years, with the expansion of technology and the desire to downsize costs within the corporate culture, the technology trend has steered towards the integration of personally owned mobile devices (i.e. smartphones) within the corporate and enterprise environment. The movement, known as “Bring Your Own Device” (hereinafter referred to as “BYOD”), seeks to minimize or eliminate the need for two separate and distinct mobile devices for one employee. While taken at face value this trend seems favorable, the corporate policy and legal implications of the implementation of BYOD are further complicated by significant investigatory issues that far outweigh the potential benefits of integrating a BYOD policy. In this paper we first set a context for the BYOD conundrum, then examine associated corporate policies, highlight the limitations to the digital investigator’s reach regarding digital evidence and review the investigatory challenges presented to the involved parties (such as the forensic examiner) from a BYOD environment. We conclude by offering recommendations such as implementing finely crafted policies and procedures (such as incident response), utilizing Mobile Device Management and other software, corporate owned devices, and enforcing signed agreements
Manual for starch gel electrophoresis: A method for the detection of genetic variation
The procedure to conduct horizontal starch gel electrophoresis on enzymes is described in detail. Areas covered are (I) collection and storage of specimens, (2)
preparation of tissues, (3) preparation of a starch gel, (4) application of enzyme extracts to a gel, (5) setting up a gel for electrophoresis, (6) slicing a gel, and (7)
staining a gel. Recipes are also included for 47 enzyme stains and 3 selected gel buffers. (PDF file contains 26 pages.
Evolution of displacements and strains in sheared amorphous solids
The local deformation of two-dimensional Lennard-Jones glasses under imposed
shear strain is studied via computer simulations. Both the mean squared
displacement and mean squared strain rise linearly with the length of the
strain interval over which they are measured. However, the
increase in displacement does not represent single-particle diffusion. There
are long-range spatial correlations in displacement associated with slip lines
with an amplitude of order the particle size. Strong dependence on system size
is also observed. The probability distributions of displacement and strain are
very different. For small the distribution of displacement has
a plateau followed by an exponential tail. The distribution becomes Gaussian as
increases to about .03. The strain distributions consist of
sharp central peaks associated with elastic regions, and long exponential tails
associated with plastic regions. The latter persist to the largest studied.Comment: Submitted to J. Phys. Cond. Mat. special volume for PITP Conference
on Mechanical Behavior of Glassy Materials. 16 Pages, 8 figure
Receipt for Paid Advertisement, G. B. & J. H. Utter, Steam Job Printers, to Peleg Clarke Jr., August 3, 1868
This receipt, dated August 3, 1868, is for an advertisement with the Narragansett Weekly and The Sabbath recorder through the G.B. and J. H. Utter Steam Job Printers, purchased by Peleg Clarke, advertising as Executor for the estate of Benjamin Reynolds. The payment of $1.75 for a 1 inch 6 week advertisement was received by G. B. and J. H. Utter.https://scholarsjunction.msstate.edu/fvw-manuscripts-clarke/1068/thumbnail.jp
Recommended from our members
Association of Plasmodium falciparum with Human Endothelial Cells in vitro.
Endothelial abnormalities play a critical role in the pathogenesis of malaria caused by the human pathogen, Plasmodium falciparum. In serious infections and especially in cerebral malaria, red blood cells infected with the parasite are sequestered in small venules in various organs, resulting in endothelial activation and vascular occlusion, which are believed to be largely responsible for the morbidity and mortality caused by this infection, especially in children. We demonstrate that after incubation with infected red blood cells (iRBCs), cultured human umbilical vein endothelial cells (HUVECs) contain parasite protein, genomic DNA, and RNA, as well as intracellular vacuoles with apparent parasite-derived material, but not engulfed or adherent iRBCs. The association of this material with the HUVECs is observed over 96 hours after removal of iRBCs. This phenomenon may occur in endothelial cells in vivo by the process of trogocytosis, in which transfer of material between cells depends on direct cell contact. This process may contribute to the endothelial activation and disruption involved in the pathogenesis of cerebral malaria
The Behavior of Granular Materials under Cyclic Shear
The design and development of a parallel plate shear cell for the study of
large scale shear flows in granular materials is presented. The parallel plate
geometry allows for shear studies without the effects of curvature found in the
more common Couette experiments. A system of independently movable slats
creates a well with side walls that deform in response to the motions of grains
within the pack. This allows for true parallel plate shear with minimal
interference from the containing geometry. The motions of the side walls also
allow for a direct measurement of the velocity profile across the granular
pack. Results are presented for applying this system to the study of transients
in granular shear and for shear-induced crystallization. Initial shear profiles
are found to vary from packing to packing, ranging from a linear profile across
the entire system to an exponential decay with a width of approximately 6 bead
diameters. As the system is sheared, the velocity profile becomes much sharper,
resembling an exponential decay with a width of roughly 3 bead diameters.
Further shearing produces velocity profiles which can no longer be fit to an
exponential decay, but are better represented as a Gaussian decay or error
function profile. Cyclic shear is found to produce large scale ordering of the
granular pack, which has a profound impact on the shear profile. There exist
periods of time in which there is slipping between layers as well as periods of
time in which the layered particles lock together resulting in very little
relative motion.Comment: 10 pages including 12 figure
Exploring the protist microbiome: the diversity of bacterial communities associated with Arcella spp. (Tubulina: Amoebozoa)
© The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gomaa, F., Utter, D. R., Loo, W., Lahr, D. J. G., & Cavanaugh, C. M. Exploring the protist microbiome: the diversity of bacterial communities associated with Arcella spp. (Tubulina: Amoebozoa). European Journal of Protistology, 82, (2022): 125861, https://doi.org/10.1016/j.ejop.2021.125861.Research on protist-bacteria interactions is increasingly relevant as these associations are now known to play important roles in ecosystem and human health. Free-living amoebae are abundant in all environments and are frequent hosts for bacterial endosymbionts including pathogenic bacteria. However, to date, only a small fraction of these symbionts have been identified, while the structure and composition of the total symbiotic bacterial communities still remains largely unknown. Here, we use the testate amoeba Arcella spp. as model organisms to investigate the specificity and diversity of Arcella-associated microbial communities. High-throughput amplicon sequencing from the V4 region of the 16S rRNA gene revealed high diversity in the bacterial communities associated with the wild Arcella spp. To investigate the specificity of the associated bacterial community with greater precision, we investigated the bacterial communities of two lab-cultured Arcella species, A. hemispherica and A. intermedia, grown in two different media types. Our results suggest that Arcella-bacteria associations are species-specific, and that the associated bacterial community of lab-cultured Arcella spp. remains distinct from that of the surrounding media. Further, each host Arcella species could be distinguished based on its bacterial composition. Our findings provide insight into the understanding of eukaryotic-bacterial symbiosis.This project was funded by National Science Foundation Postdoctoral Research Fellowship in Biology to F. Gomaa, Grant Number: PRFB1611514. Support was provided to D.R.U. from the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE1745303 to D.R.U and by Harvard University’s Department of Organismic and Evolutionary Biology program
Role of a cdk5-associated protein, p35, in herpes simplex virus type 1 replication in vivo
Previous studies have shown that herpes simplex virus type 1 (HSV-1) replication is inhibited by the cyclin-dependent kinase (cdk) inhibitor roscovitine. One roscovitine-sensitive cdk that functions in neurons is cdk5, which is activated in part by its binding partner, p35. Because HSV establishes latent infections in sensory neurons, we sought to determine the role p35 plays in HSV-1 replication in vivo. For these studies, wild-type (wt) and p35-/- mice were infected with HSV-1 using the mouse ocular model of HSV latency and reactivation. The current results indicate that p35 is an important determinant of viral replication in vivo
Vacuum polarization calculations for hydrogenlike and alkalilike ions
Complete vacuum polarization calculations incorporating finite nuclear size
are presented for hydrogenic ions with principal quantum numbers n=1-5.
Lithiumlike, sodiumlike, and copperlike ions are also treated starting with
Kohn-Sham potentials, and including first-order screening corrections. In both
cases dominant Uehling terms are calculated with high accuracy, and smaller
Wichmann- Kroll terms are obtained using numerical electron Green's functions.Comment: 23 pages, 1 figur
- …