4 research outputs found

    Synthesis, physicochemical characterisation and DNA binding study of a novel azo Schiff base Ni(II) complex

    No full text
    The azo Schiff base ligand was synthesised, along with its Ni(II) complex, by diazotisation of salicylaldehyde with 4-nitroaniline in accordance with the accepted literature approach. Using a variety of spectroscopic techniques, the resulting complex is analysed both quantitatively and qualitatively (Elemental analysis, FT-IR spectroscopy, UV-VIS spectroscopy, 1H NMR, etc.). Spectral measurements of the complex revealed a mole ratio of 1:1. The non-electrolytic nature of the complex is confirmed by molar conductance investigation. The unique azo compound had a tetrahedral shape as a result of the tetra coordination of two phenolic oxygen and two imine nitrogen. The ability of the metal complexes to bind DNA was examined using absorption spectroscopy, fluorescence spectroscopy, viscosity tests, and thermal denaturation methods. Experimental research suggests that complexes bind to DNA through intercalation

    DNA Binding, amelioration of oxidative stress, and molecular docking study of Zn(II) metal complex of a new Schiff base ligand

    No full text
    <p>A new Schiff base ligand, H<sub>2</sub>L, and its Zn(II) complex were prepared and characterized by different analytical and spectroscopic techniques. The elemental analysis results suggest the stoichiometry of the complex to be 1:1. The molar conductance study shows the non-electrolytic nature of the complex. Infrared spectra reveal that the metal ion is coordinated in tetradentate fashion which was further confirmed by NMR study. The synthesized complex was found to interact with CT-DNA quite efficiently. The DNA binding study of the complex was explored by UV–vis and viscosity measurement. Fluorescence titration studies and the experimental results suggest that the complex might bind to DNA via an intercalative mode. The <i>in silico</i> target prediction and molecular docking experiments confirm that, apart from high interaction potentiality with nucleotides, the complex has possible implications in carcinogenesis, too.</p
    corecore