360 research outputs found

    Quantum thermodynamics in a multipartite setting: A resource theory of local Gaussian work extraction for multimode bosonic systems

    Full text link
    Quantum thermodynamics can be cast as a resource theory by considering free access to a heat bath, thereby viewing the Gibbs state at a fixed temperature as a free state and hence any other state as a resource. Here, we consider a multipartite scenario where several parties attempt at extracting work locally, each having access to a local heat bath (possibly with a different temperature), assisted with an energy-preserving global unitary. As a specific model, we analyze a collection of harmonic oscillators or a multimode bosonic system. Focusing on the Gaussian paradigm, we construct a reasonable resource theory of local activity for a multimode bosonic system, where we identify as free any state that is obtained from a product of thermal states (possibly at different temperatures) acted upon by any linear-optics (passive Gaussian) transformation. The associated free operations are then all linear-optics transformations supplemented with tensoring and partial tracing. We show that the local Gaussian extractable work (if each party applies a Gaussian unitary, assisted with linear optics) is zero if and only if the covariance matrix of the system is that of a free state. Further, we develop a resource theory of local Gaussian extractable work, defined as the difference between the trace and symplectic trace of the covariance matrix of the system. We prove that it is a resource monotone that cannot increase under free operations. We also provide examples illustrating the distillation of local activity and local Gaussian extractable work.Comment: 22 pages, 5 figures, minor corrections to make it close to the published version, updated list of reference

    Partial order on passive states and Hoffman majorization in quantum thermodynamics

    Full text link
    Passive states, i.e., those states from which no work can be extracted via unitary operations, play an important role in the foundations and applications of quantum thermodynamics. They generalize the familiar Gibbs thermal states, which are the sole passive states being stable under tensor product. Here, we introduce a partial order on the set of passive states that captures the idea of a passive state being virtually cooler than another one. This partial order, which we build by defining the notion of relative passivity, offers a fine-grained comparison between passive states based on virtual temperatures (just like thermal states are compared based on their temperatures). We then characterize the quantum operations that are closed on the set of virtually cooler states with respect to some fixed input and output passive states. Viewing the activity, i.e., non-passivity, of a state as a resource, our main result is then a necessary and sufficient condition on the transformation of a class of pure active states under these relative passivity-preserving operations. This condition gives a quantum thermodynamical meaning to the majorization relation on the set of non-increasing vectors due to Hoffman. The maximum extractable work under relative passivity-preserving operations is then shown to be equal to the ergotropy of these pure active states. Finally, we are able to fully characterize passivity-preserving operations in the simpler case of qubit systems, and hence to derive a state interconversion condition under passivity-preserving qubit operations. The prospect of this work is a general resource-theoretical framework for the extractable work via quantum operations going beyond thermal operations.Comment: 21 pages, 3 figure

    Gaussian work extraction from random Gaussian states is nearly impossible

    Full text link
    Quantum thermodynamics can be naturally phrased as a theory of quantum state transformation and energy exchange for small-scale quantum systems undergoing thermodynamical processes, thereby making the resource theoretical approach very well suited. A key resource in thermodynamics is the extractable work, forming the backbone of thermal engines. Therefore it is of interest to characterize quantum states based on their ability to serve as a source of work. From a near-term perspective, quantum optical setups turn out to be ideal test beds for quantum thermodynamics; so it is important to assess work extraction from quantum optical states. Here, we show that Gaussian states are typically useless for Gaussian work extraction. More specifically, by exploiting the ``concentration of measure'' phenomenon, we prove that the probability that the Gaussian extractable work from a zero-mean energy-bounded multimode random Gaussian state is nonzero is exponentially small. This result can be thought of as an ϵ\epsilon-no-go theorem for work extraction from Gaussian states under Gaussian unitaries, thereby revealing a fundamental limitation on the quantum thermodynamical usefulness of Gaussian components.Comment: 7+8 pages, 2 figures, close to the published versio

    Fragmentation, domain formation and atom number fluctuations of a two-species Bose-Einstein condensate in an optical lattice

    Full text link
    We theoretically study the loading of a two-species Bose-Einstein condensate to an optical lattice in a tightly-confined one-dimensional trap. Due to quantum fluctuations the relative inter and intra species phase coherence between the atoms and the on-site atom number fluctuations are reduced in the miscible regime. For the immiscible case the fluctuations are enhanced and the atoms form metastable interleaved spatially separated domains where the domain length and its fluctuations are affected by quantum fluctuations.Comment: 32 page

    Collective molecule formation in a degenerate Fermi gas via a Feshbach resonance

    Full text link
    We model collisionless collective conversion of a degenerate Fermi gas into bosonic molecules via a Feshbach resonance, treating the bosonic molecules as a classical field and seeding the pairing amplitudes with random phases. A dynamical instability of the Fermi sea against association into molecules initiates the conversion. The model qualitatively reproduces several experimental observations {[Regal et al., Nature {\bf 424}, 47 (2003)]}. We predict that the initial temperature of the Fermi gas sets the limit for the efficiency of atom-molecule conversion.Comment: 4 pages, 3 figures, 10+ references, accepted to PR

    Control of InGaAs facets using metal modulation epitaxy (MME)

    Full text link
    Control of faceting during epitaxy is critical for nanoscale devices. This work identifies the origins of gaps and different facets during regrowth of InGaAs adjacent to patterned features. Molecular beam epitaxy (MBE) near SiO2 or SiNx led to gaps, roughness, or polycrystalline growth, but metal modulated epitaxy (MME) produced smooth and gap-free "rising tide" (001) growth filling up to the mask. The resulting self-aligned FETs were dominated by FET channel resistance rather than source-drain access resistance. Higher As fluxes led first to conformal growth, then pronounced {111} facets sloping up away from the mask.Comment: 18 pages, 7 figure
    • …
    corecore