24 research outputs found
Newly Identified CYP2C93 Is a Functional Enzyme in Rhesus Monkey, but Not in Cynomolgus Monkey
Cynomolgus monkey and rhesus monkey are used in drug metabolism studies due to their evolutionary closeness and physiological resemblance to human. In cynomolgus monkey, we previously identified cytochrome P450 (P450 or CYP) 2C76 that does not have a human ortholog and is partly responsible for species differences in drug metabolism between cynomolgus monkey and human. In this study, we report characterization of CYP2C93 cDNA newly identified in cynomolgus monkey and rhesus monkey. The CYP2C93 cDNA contained an open reading frame of 490 amino acids approximately 84–86% identical to human CYP2Cs. CYP2C93 was located in the genomic region, which corresponded to the intergenic region in the human genome, indicating that CYP2C93 does not correspond to any human genes. CYP2C93 mRNA was expressed predominantly in the liver among 10 tissues analyzed. The CYP2C93 proteins heterologously expressed in Escherichia coli metabolized human CYP2C substrates, diclofenac, flurbiprofen, paclitaxel, S-mephenytoin, and tolbutamide. In addition to a normal transcript (SV1), an aberrantly spliced transcript (SV2) lacking exon 2 was identified, which did not give rise to a functional protein due to frameshift and a premature termination codon. Mini gene assay revealed that the genetic variant IVS2-1G>T at the splice site of intron 1, at least partly, accounted for the exon-2 skipping; therefore, this genotype would influence CYP2C93-mediated drug metabolism. SV1 was expressed in 6 of 11 rhesus monkeys and 1 of 8 cynomolgus monkeys, but the SV1 in the cynomolgus monkey was nonfunctional due to a rare null genotype (c.102T>del). These results suggest that CYP2C93 can play roles as a drug-metabolizing enzyme in rhesus monkeys (not in cynomolgus monkeys), although its relative contribution to drug metabolism has yet to be validated
A novel animal model for in vivo study of liver cancer metastasis
AIM: To establish an animal model with human hepatocyte- repopulated liver for the study of liver cancer metastasis. METHODS: Cell transplantation into mouse livers was conducted using alpha-fetoprotein (AFP)-producing human gastric cancer cells (h-GCCs) and h-hepatocytes as donor cells in a transgenic mouse line expressing urokinase-type plasminogen activator (uPA) driven by the albumin enhancer/promoter crossed with a severe combined immunodeficient (SCID) mouse line (uPA/ SCID mice). Host mice were divided into two groups (A and B). Group A mice were transplanted with h-GCCs alone, and group B mice were transplanted with h-GCCs and h-hepatocytes together. The replacement index (RI), which is the ratio of transplanted h-GCCs and h-hepatocytes that occupy the examined area of a histological section, was estimated by measuring h-AFP and h-albumin concentrations in sera, respectively, as well as by immunohistochemical analyses of h-AFP and human cytokeratin 18 in histological sections. RESULTS: The h-GCCs successfully engrafted, repopulated, and colonized the livers of mice in group A (RI = 22.0% ± 2.6%). These mice had moderately differentiated adenocarcinomatous lesions with disrupted glandular structures, which is a characteristics feature of gastric cancers. The serum h-AFP level reached 211.0 ± 142.2 g/mL (range, 7.1-324.2 g/mL). In group B mice, the h-GCCs and h-hepatocytes independently engrafted, repopulated the host liver, and developed colonies (RI = 12.0% ± 6.8% and 66.0% ± 12.3%, respectively). h-GCC colonies also showed typical adenocarcinomatous glandular structures around the h-hepatocyte- colonies. These mice survived for the full 56 day-study and did not exhibit any metastasis of h-GCCs in the extrahepatic regions during the observational period. The mice with an h-hepatocyte-repopulated liver possessed metastasized h-GCCs and therefore could be a useful humanized liver animal model for studying liver cancer metastasis in vivo. CONCLUSION: A novel animal model of human liver cancer metastasis was established using the uPA/SCID mouse line. This model could be useful for in vivo testing of anti-cancer drugs and for studying the mechanisms of human liver cancer metastasis