68 research outputs found

    Optimization of hydrothermal-assisted alkali process for enhanced xylan recovery from banana fiber biomass

    Get PDF
    Banana fiber is a rich lignocellulosic biomass source that has not been widely explored. The hemicellulose components (15 - 20 %) of banana fiber can be a feedstock for producing high-value commodity chemicals. Hemicellulose is extracted by physical, chemical, and biological methods, in which combining hydrothermal treatment with alkaline mode of extraction provides an enhanced recovery percentage. Thus, the present study aimed to optimize the hydrothermal-assisted alkaline method of xylan extraction from the banana fiber biomass. Initially, xylan was extracted with a conventional-based alkali method. A maximum of about 43 and 35 % was recovered from pretreated and raw banana fiber at 12% NaOH concentration when incubated at 55 °C for 24 h. To improve the xylan yield, the hydrothermal assisted alkali method experimented in which 67.1% and 58.3 % of xylan were recovered when treated at 121 °C for 1 h at 12% NaOH. To further enhance the xylan recovery, a two-step alkali process by combining conventional and hydrothermal-assisted alkali methods resulted in the highest xylan (81%) recovery from pretreated banana fiber when incubated with 12 % alkali for 8 h followed by steam treatment. On the other hand, a maximum of 73 % of xylan was recovered when steam treated after incubation for 24 h from raw banana fiber. Thus, the alkali incubation followed by steam treatment significantly showed the highest xylan recovery from the banana fiber biomass. The extracted xylan might be utilized as a source for various xylan-based products, including furfural, xylooligosaccharides, xylose, and xylitol, all of which have significant roles in the pharmaceutical and food industries

    Apoplast-associated Bacillus amyloliquefaciens LAS10 for plant growth promotion and drought stress tolerance in little millet (Panicum sumatransae)

    No full text
    Bacterial endophytes thriving in the apoplast could be tailored to withstand environmental challenges, thereby contributing to plant stress resilience. Developing plant growth-promoting (PGP) bacteria resilient to drought is crucial for sustainable agriculture and improved crop production under stress conditions. Thus, the present study aimed to decode the drought-tolerant apoplast-associated PGP bacteria from little millet (Panicum sumatrense L.) and profile its functional traits including the metabolites for PGP and drought resilience. The drought tolerant PGP bacterial isolates from apoplastic fluids of little millet (Var. ATL1) grown under stressed conditions (-10 bars) on polyethylene glycol (PEG) (PEG 6000) infused agar plates revealed that a total of 12 isolates, were initially screened for their ability to tolerate drought up to –36.6 bars (–3.6 MPa) and of which, 6 isolates (LAS1, LAS2, LAS4, LAS6, LAS9, and LAS10) were selected. Further, screening for their plant growth-promoting (PGP) traits such as 1-aminocyclopropane-1-carboxylate deaminase (ACCd) production, exopolysaccharide production, potassium (K), phosphorous (P), and Zinc (Zn) nutrition, indole acetic acid (IAA) production, siderophore production, ammonia, and hydrogen cyanide (HCN) exhibited higher PGP potentials in LAS10 followed by LAS2 and LAS4. Of three potential isolates (LAS10, LAS2, and LAS4), LAS10 produced the highest ACCd (147 n moles α- ketobutyrate mg–1h–1), IAA (15.9 μg mL–1), siderophore (54.9 % units) and P solubilization compared to other isolates. Further, isolate LAS10 was identified as Bacillus amyloliquefaciens based on 16S rRNA sequence analysis. Metabolite profiling of B. amyloliquefaciens LAS10 in GC–MS under induced stress conditions yielded several drought-tolerant metabolites belonging to the class viz., organic acids, fatty acids, amino acid and its derivatives, organoheterocyclic compounds, and benzenoids. The compounds responsible for drought tolerance such as phenol, proline, fumaric acid, ascorbic acid, and gibberellic acid are more pronounced under induced drought stress (PEG 6000) which would aid in drought stress tolerance and facilitate plant health and fitness. These results implied that B. amyloliquefaciens LAS10, an apoplast-associated drought-tolerant endophytic bacteria, would enhance plant growth under drought stress, and can be further extrapolated as a newer bio inoculant for abiotic stress mitigation and sustainable production in little millet

    Gibberellic acid production by <i>Fusarium fujikuroi </i>SG2

    No full text
    211-214Present study isolates efficient strains of gibberellins producing fungal strains from ‘bakanae’ diseased root system of rice plants for their GA3 production potentials in Czapek-Dox liquid medium/improved medium. One of the isolates SG2 (GA3, 1175 mg/l) produced higher GA3 than standards strains of Gibberella fujikuroi, which was identified as Fusarium fujikuroi SG2 (MTCC4649). While studying GA3 production pattern by this strain, gibberellin synthesis initiated on 3rd day and reached maximum by 9th day of fermentation

    Calcite dissolution by <em>Bacillus subtilis</em> SSRCI02: An <em>in vitro</em> study for the reclamation of calcareous saline-sodic soils

    No full text
    1267-1273Dissolution of calcite by microorganisms to supply Ca2+ to replace Na+ in soil exchange sites is an important trait to reduce salinity and sodicity. An attempt was made to isolate and screen calcite dissolving bacteria for reclamation of calcareous saline-sodic soils and also to promote better crop growth. While screening the isolates for calcite solubilization index (0.37 to 2.62) and titratable acidity (0.04 to 0.25 g.l-1), the isolate SSRCI02 possessing higher dissolution was identified as Bacillus subtilis. Acetic and gluconic acid produced by B. subtilis SSRCI02 in the presence of CaCO3 recorded 20% of calcite dissolution with release of sufficient Ca2+ ions. Further, FT-IR spectra confirmed reduction of native calcite (69.1 to 62.5) suggesting their dissolution. Siderophore and extracellular polysaccharide productions might also aid in calcite dissolution and plant growth promotion as evidenced by indole acetic acid production, P and Zn solubilization

    Maize Apoplastic Fluid Bacteria Alter Feeding Characteristics of Herbivore (<i>Spodoptera frugiperda</i>) in Maize

    No full text
    Maize is an important cereal crop which is severely affected by Spodoptera frugiperda. The study aims to identify endophytic bacteria of maize root and leaf apoplastic fluid with bioprotective traits against S. frugiperda and plant growth promoting properties. Among 15 bacterial endophytic isolates, two strains—namely, RAF5 and LAF5—were selected and identified as Alcaligenes sp. MZ895490 and Bacillus amyloliquefaciens MZ895491, respectively. The bioprotective potential of B. amyloliquefaciens was evaluated through bioassays. In a no-choice bioassay, second instar larvae of S. frugiperda fed on B. amyloliquefaciens treated leaves (B+) recorded comparatively lesser growth (1.10 ± 0.19 mg mg−1 day−1) and consumptive (7.16 ± 3.48 mg mg−1 day−1) rates. In larval dip and choice bioassay, the same trend was observed. In detached leaf experiment, leaf feeding deterrence of S. frugiperda was found to be greater due to inoculation with B. amyloliquefaciens than Alcaligenes sp. The phenolics content of B. amyloliquefaciens inoculated plant was also found to be greater (3.06 ± 0.09 mg gallic acid g−1). However, plant biomass production was more in Alcaligenes sp inoculated treatment. The study thus demonstrates the potential utility of Alcaligenes sp. and B. amyloliquefaciens for improving growth and biotic (S. frugiperda) stress tolerance in maize

    Delignification of corncob via combined hydrodynamic cavitation and enzymatic pretreatment: process optimization by response surface methodology

    No full text
    Abstract Background Renewable liquid biofuel production will reduce crude oil import of India. To displace the huge quantity of fossil fuels used for energy production, this research was focused on utilization of unexploited low-cost agricultural residues for biofuel production. Corncobs are a byproduct of corn processing industry, and till now it is not utilized for biofuel production, eventhough it has high lignocellulosic concent. In this study, combined hydrodynamic cavitation and enzymatic (HCE) method was evaluated as a pretreatment method of corncob for biofuel production. The most significant process parameters namely (i) enzyme loading (3–10 U g−1), (ii) biomass loading (2.5–5.0%), and (iii) duration (5–60 min) were optimized and their effects on combined HCE pretreatment of corncob was studied through response surface methodology for lignin reduction, hemicellulose reduction and cellulose increase. Results The highest lignin reduction (47.4%) was obtained in orifice plate 1 (OP1) under the optimized conditions namely biomass loading at 5%, enzyme loading at 6.5 U g−1 of biomass, and reaction duration of 60 min. The above tested independent variables had a significant effect on lignin reduction. The cavitational yield and energy consumption under the above-mentioned optimized conditions for OP1 was 3.56 × 10−5 g J−1 and 1.35 MJ kg−1, respectively. Conclusions It is evident from the study that HCE is an effective technology and requires less energy (1.35 MJ kg−1) than other biomass pretreatment methods

    Activity of volatiles induced by microbes and natural plants stifled the growth of Pythium aphanidermatum - the damping off in Tomato

    No full text
    Abstract Background Volatilomes from natural plants and microbes imparts diverse antifungal properties to suppress the growth of plant pathogens and therefore can be a suitable alternative of chemical fungicides. The present experiment was to study effect of volatiles produced by natural plants and microbes on the fungal growth of Pythium aphanidermatum, which is a tomato seedling pathogen. Results Isolate of P. aphanidermatum, causing damping off in tomato were isolated and incubated at 25 ± 2 °C. The isolate was tested for the anti-oomycetes activities of volatiles in vitro. The volatiles produced by the leaves of Mentha spicata and Cymbopogon citratus showed the maximum inhibitory effect of 45.56 and 24.70 percent, respectively on the mycelial growth of P. aphanidermatum, whereas, the pathogen was not inhibited on exposure to the volatiles of macro-basidiomycetes fungi. The volatiles of T. asperellum showed the maximum inhibitory effect of 69.26 percent against P. aphanidermatum. The study also included the identification of Volatile Organic Compounds (VOCs) involved in the suppression of pathogens by Headspace Gas Chromatography Mass Spectrometry (HS GCMS). The results revealed the production of carvone by the leaves of M. spicata; citronellol and geraniol by C. citratus; isopentyl alcohol and limonene by T. asperellum with increased peak area percentage and these compounds possessed antifungal properties. The vaporous action of isopentyl alcohol completely suppressed the mycelial growth of P. aphanidermatum, which is highly correlated to the T. asperellum extract on pathogenic growth. While the compounds, carvone, and citronellol showed the maximum inhibitory effect of 89.02 and 85.49 percent, respectively when used at 500 ppm and also altered the sporulation behavior of P. aphanidermatum. Conclusion Results showed that volatiles of M. spicata and T. asperellum have anti-oomycetes action on pathogenic growth leading to a distortion of sporulation of P. aphanidermatum. High antifungal properties make VOCs suitable for incorporation as a new integrated plant disease management programs

    Bioprospecting thermophilic glycosyl hydrolases, from hot springs of Himachal Pradesh, for biomass valorization

    No full text
    Abstract The harnessing of biocatalysts from extreme environment hot spring niche for biomass conversion is significant and promising owing to the special characteristics of extremozymes attributed by intriguing biogeochemistry and extreme conditions of these environments. Hence, in the present study 38 bacterial isolates obtained from hot springs of Manikaran (~ 95 °C), Kalath (~ 50 °C) and Vasist (~ 65 °C) of Himachal Pradesh were screened for glycosyl hydrolases by in situ enrichment technique using lignocellulosic biomass (LCB). Based on their hydrolytic potential 5 isolates were selected and they were Bacillus tequilensis (VCB1, VCB2 and VSDB4), and B. licheniformis (KBFB2 and KBFB3). Cellulolytic activity assayed by growth under submerged fermentation showed that B. tequilensis VCB1 had maximum FPA activity (3.38 IU ml−1) in 48 h, while B. licheniformis KBFB3 excelled for endoglucanase (EGA of 4.81 IU ml−1 in 24 h) and cellobiase (0.71 IU ml−1 in 48 h) activities. Among all the thermophilic biocatalysts evaluated, highest exoglucanase (0.06 IU ml−1) activity was observed in B. tequilensis VSDB4 while endoglucanase of B. licheniformis KBFB3 showed optimum specific activity at pH 7 and 70 °C. Further, the presence of celS, celB and xlnB genes in the isolates suggest their possible role in biomass conversion. Protein profiling by SDS-PAGE analysis revealed that cellulase isoforms migrated with molecular masses of 75 kDa. The endoglucanase activity of promising strain B. licheniformis KBFB3 was enhanced in the presence of Ca2+, mercaptoethanol and sodium hypochlorite whereas moderately inhibited by Cu2+, Zn2+, urea, SDS and H2O2. The results of this study indicate scope for the possible development of novel biocatalysts with multifunctional thermostable glycosyl hydrolases from hot springs for efficient hydrolysis of the complex lignocellulosic biomass into simple sugars and other derived bioproducts leading to biomass valorization

    EnZolv delignification of cotton spinning mill waste and optimization of process parameters using response surface methodology (RSM)

    No full text
    Abstract Background EnZolv is a novel enzyme-based, eco-friendly biomass pretreatment process that has shown great potential in the field of textile engineering and biotechnology. It employs laccase from Hexagonia hirta MSF2 and 2% ethanol in the process of delignification. The process is designed to evaluate optimal conditions to remove lignin and other impurities from cotton spinning mill waste (CSMW), without compromising the quality and strength of the fibers. CSMW is a low-cost and readily available source of cellulose, making it an ideal candidate for delignification using EnZolv. By optimizing the pretreatment conditions and harnessing the potential of enzymatic delignification, this research aims to contribute to more sustainable and efficient ways of utilizing lignocellulosic biomass in various industries for the production of biochemical and bioproducts. Results The present study emphasizes the EnZolv pretreatment in the delignification of cotton spinning mill wastes irrespective of the cellulose content. EnZolv process parameters such as, moisture content, enzyme load, incubation time, incubation temperature, and shaking speed were optimized. Under pre-optimized conditions, the percent lignin reduction was 61.34%, 61.64%, 41.85%, 35.34%, and 35.83% in blowroom droppings (BD), flat strips (FS), lickerin fly (LF), microdust (MD) and comber noils (CN), respectively. Using response surface methodology (RSM), the statistically optimized EnZolv pretreatment conditions showed lignin reduction of 59.16%, 62.88%, 48.26%, 34.64%, and 45.99% in BD, FS, LF, MD, and CN, respectively. Conclusion Traditional chemical-based pretreatment methods often involve harsh chemicals and high energy consumption, which can have detrimental effects on the environment. In contrast, EnZolv offers a greener approach by utilizing enzymes that are biodegradable and more environmentally friendly. The resulting fibers from EnZolv treatment exhibit improved properties that make them suitable for various applications. Some of the key properties include enhanced cellulose recovery, reduced lignin content, and improved biophysical and structural characteristics. These improvements can contribute to the fiber's performance and processability in different industries and future thrust for the production of cellulose-derived and lignin-derived bioproducts. Graphical Abstrac
    corecore