19 research outputs found

    Säulenperkolationsversuche mit perfluorierten Tensiden und Bioziden in Böden

    Get PDF
    Elutionstests im Labormaßstab werden zur Ermittlung der Freisetzung von Schad-stoffen aus Böden oder mineralischen Abfällen für die Verwertung in technischen Erdbauwerken durchgeführt. Sie sollen die Feldbedingungen möglichst realitätsnah widerspiegeln und auch die Beurteilung der Freisetzung von Schadstoffen über längere Zeiträume ermöglichen. Aus diesem Grunde werden im Entwurf der novellierten Bundesbodenschutz- und Altlastenverordnung neue Verfahren zur Eluatgewinnung aus den genannten Materialien festgeschrieben. Dazu zählt unter anderem ein Säulenperkolationsverfahren (DIN 19528) zur gemeinsamen Untersuchung des Elutionsverhaltens von anorganischen und organischen Stoffen. Mit diesem kann im Vergleich zu Schüttelversuchen (DIN 19527, DIN 19529) auch der zeitliche Verlauf der Schadstofffreisetzung erfasst und bewertet werden. Allerdings sind die Verfahren bisher nur für anorganische Stoffe und wenige prioritäre organische Schadstoffe validiert worden (PAK, MKW, PCB, Phenole). Aber auch Schadstoffe wie perfluorierte Tenside (PFT), die z.B. für die Veredlung von Papier, Textilien und Haushaltsgeräten eingesetzt werden oder Biozide, mit de-nen Bauprodukte zum Schutz vor mikrobiellem Befall ausgerüstet werden (z.B. Fas-sadenbeschichtungen und Holz), geraten immer stärker in die Diskussion. Diese Substanzen sind gesundheits- und umweltschädlich. Sie können aus Produkten ausgewaschen werden und dann mit Regen-und Sickerwasser in Boden und Grundwasser transportiert werden. Darüber hinaus können sie auch über das Abwasser in Klärschlämmen anreichert werden und bei Ausbringen von Klärschlamm auf Böden ebenfalls ins Grundwasser gelangen. Daher wurden die Möglichkeiten getestet, mit Hilfe von Säulenversuchen das Aus-laugverhalten von Böden mit PFT und Bioziden (Tebuconazol) zu charakterisieren. Desweiteren wurde auch die Eignung von Werkstoffen der Säulenversuchsanlage (insbesondere Schlauchmaterialien) für die Untersuchung dieser Schadstoffe be-trachtet, die in Kontakt mit dem Eluat kommen. Sorptions- und Desorptions¬prozesse an Werkstoffen können zu Minderbefunden oder Überschätzungen der Eluat-konzentration und damit zu Fehlinterpretationen bei der Gefahrenbeurteilung führen

    Environmental Impact of Construction Products on Aquatic Systems—Principles of an Integrated Source–Path–Target Concept

    No full text
    Buildings exposed to water can release undesirable substances which, once transported to environmental compartments, may cause unwanted effects. These exposure pathways need to be investigated and included in risk assessments to safeguard water quality and promote the sustainability of construction materials. The applied materials, exposure conditions, distribution routes and resilience of receiving compartments vary considerably. This demonstrates the need for a consistent concept that integrates knowledge of emission sources, leaching processes, transport pathways, and effects on targets. Such a consistent concept can serve as the basis for environmental risk assessment for several scenarios using experimentally determined emissions. Typically, a source–path–target concept integrates data from standardized leaching tests and models to describe leaching processes, the distribution of substances in the environment and the occurrence of substances at different points of compliance. This article presents an integrated concept for assessing the environmental impact of construction products on aquatic systems and unravels currently existing gaps and necessary actions. This manuscript outlines a source–path–target concept applicable to a large variety of construction products. It is intended to highlight key elements of a holistic evaluation concept that could assist authorities in developing procedures for environmental risk assessments and mitigation measures and identifying knowledge gaps

    The Impact of Weather Conditions on Biocides in Paints

    No full text
    Weather conditions affect biocides on exposed outer surfaces on constructions. Contact with water causes hydrolysis and leaching of substances. Ultraviolet radiation may induce photolysis. As a result, a mixture of biocidal active substances and transformation products can be emitted into the environment. In a semi-field study, leaching of the biocidal active substances terbutryn, diuron, octylisothiazolinone, carbendazim, and selected transformation products was observed for two paints containing either a white or a red pigment. Painted test panels were exposed to natural weathering for about 1.5 years. Runoff samples were analyzed during the course of the experiment. At the end of the study, residues of biocidal active substances and transformation products were determined in sections of the test panels. Emissions of substances were mainly observed during the first few months of the experiments. Increased emissions of transformation products were observed during periods of increased global radiation and subsequent periods with relatively high amounts of driving rain. Different patterns of transformation products were observed, especially for terbutryn, both for paints containing different pigments and in experiments that were started in different periods of the year, as well as during different periods of the experiments

    Modelling inorganic and organic biocide leaching from CBA-amine (Copper-Boron-Azole) treated wood based on characterisation leaching tests

    No full text
    Numerical simulation of the leaching behaviour of treated wood is the most pertinent and less expensive method for the prediction of biocides' release in water. Few studies based on mechanistic leaching models have been carried out so far. In this work, a coupled chemistry-mass transport model is developed for simulating the leaching behaviour of inorganic (Cu, B) and organic (Tebuconazole) biocides from CBA-amine treated wood. The model is based on experimental investigations (lab-scale leaching tests coupled with chemical and structural analysis). It considers biocides' interactions with wood solid components and with extractives (literature confirmed reactions), as well as transport mechanisms (diffusion, convection) in different compartments. Simulation results helped at identifying the main fixation mechanisms, like (i) direct complexation of Cu by wood-phenolic and -carboxylic sites (and not via monoethanolamine; complex) on lignin and hemicellulose and strong dependence on extractives' nature, (ii) pH dependent binding of tebuconazole on polarized -OH moieties on wood. The role of monoethanolamine is to provide a pore-solution pH of about 7.5, when copper solubility is found to be weakest. The capability of the developed model to simulate the chemical and transport behaviour is the main result of this study. Moreover, it proved that characterization leaching tests (pH dependency and dynamic tests), combined with appropriate analytical methods are useful experimental tools. Due to its flexibility for representing and simulating various leaching conditions, chemical-transport model developed could be used to further simulate the leaching behaviour of CBA treated wood at larger scales. (C) 2013 Elsevier B.V. All rights reserved

    Ecotoxicological evaluation of construction products: inter-laboratory test with DSLT and percolation test eluates in an aquatic biotest battery

    No full text
    BACKGROUND: A European inter-laboratory test with 29 participating laboratories investigated whether a battery of four ecotoxicological tests is suitable for assessing the environmental compatibility of construction products. For this purpose, a construction product was investigated with the dynamic surface leaching test (DIN CEN/TS 16637-2) and the percolation test (DIN CEN/TS 16637-3). The eluates were produced centrally by one laboratory and were tested by the participants using the following biotests: algae test (ISO 8692), acute daphnia test (ISO 6341), luminescent bacteria test (DIN EN ISO 11348), and fish egg test (DIN EN ISO 15088). As toxicity measures, EC₅₀ and LID values were calculated. RESULTS: Toxic effects of the eluates were detected by all four biotests. The bacteria test was by far the most sensitive, followed by the algae test and the daphnia test; the fish egg test was the least sensitive for eluates of both leaching tests. The toxicity level of the eluates was very high in the bacteria, daphnia, and algae test, with lowest ineffective dilution values of LID = 70 to LID = 13,000 and corresponding EC₅₀ values around or even below 1 volume percent. The reproducibility (approximated by interlaboratory variability) of the biotests was good (< 53%) to very good (< 20%), regardless of the toxicity level of the eluates. The reproducibility of the algae test was up to 80%, and thus still acceptable. CONCLUSION: It can be confirmed that the combination of leaching and ecotoxicity tests is suitable to characterize with sufficient reproducibility the environmental impact posed by the release of hazardous substances from construction products

    Investigating the ecotoxicity of construction product eluates as multicomponent mixtures

    No full text
    Abstract Background The release of hazardous compounds from construction products can harm human health and the environment. To improve the sustainability of construction materials, the leaching of substances from construction products and their potential environmental impact should be assessed. Twenty-seven construction products from different product groups were examined with a combination of standardized leaching tests (dynamic surface leaching test and percolation test) and biotests (algae, daphnia, fish egg, luminescent bacteria, umu and Ames fluctuation tests). To identify the released substances, extensive qualitative and quantitative chemical analyses were performed, including gas chromatographic and liquid chromatographic screening techniques. Results Many of the tested eluates caused significant ecotoxic effects. Particularly high ecotoxicities were observed for grouts (lowest ineffective dilution (LID) up to 16384) and cork granules (LID up to 24578). The results of ecotoxicity tests allow the prioritization of the eluates that should be subjected to detailed chemical analyses. Organic screening by different methods and ranking the identified substances based on recorded hazard classification is a suitable approach to identify the relevant toxic substances. Conclusions Determining the ecotoxicity of eluates from construction products records the summary effect of all leachable substances. This instrument is especially useful for construction products of complex and largely unknown composition. The ecotoxicological and the chemical–analytical approach complement each other in an ideal way to characterize the potential hazard of eluates from construction products and to identify the environmentally hazardous components in these eluates. Our results confirm that the proposed harmonized methods for testing eluate toxicity are an adequate and applicable procedure to move toward a more sustainable way of building and to reduce toxic effects of construction products in their use phase in the environment.

    Biocide leaching from CBA treated wood - A mechanistic interpretation

    No full text
    Treated wood is frequently used for construction. However, there is a need to ensure that biocides used for the treatment are not a threat for people or environment. The paper focused on Pinus sylvestris treated with copper-boron-azole (CBA), containing tebuconazole as organic biocide and monoethanolamine (Mea). This study investigates chemical mechanisms of fixation and mobilisation involved in the leaching process of the used inorganic and organic biocides in CBA. A pH dependent leaching test was performed, followed by a set of complementary analysis methods in order to identify and quantify the species released from wood. The main findings of this study are: - Organic compounds are released from untreated and treated wood; the quantity of released total organic carbon, carboxylic and phenolic functions increasing with the pH. - Nitrogen containing compounds, i.e. mainly Mea and its reaction products with extractives, are released in important quantities from CBA treated wood, especially at low pH. - The release of copper is the result of competitive reactions: fixation via complexation reactions and complexation with extractives in the liquid phase. The specific pH dependency of Cu leaching is explained by the competition of ligands for protonation and complexation. - Tebuconazole is released to a lesser extent relative to its initial content. Its fixation on solid wood structure seems to be influenced by pH, suggesting interactions with -OH groups on wood. Boron release appears to be pH independent and very high. This confirms its weak fixation on wood and also no or weak interaction with the extractives. (C) 2012 Elsevier B.V. All rights reserved

    Using Environmental Simulations to Test the Release of Hazardous Substances from Polymer-Based Products: Are Realism and Pragmatism Mutually Exclusive Objectives?

    No full text
    The potential release of hazardous substances from polymer-based products is currently in the focus of environmental policy. Environmental simulations are applied to expose such products to selected aging conditions and to investigate release processes. Commonly applied aging exposure types such as solar and UV radiation in combination with water contact, corrosive gases, and soil contact as well as expected general effects on polymers and additional ingredients of polymer-based products are described. The release of substances is based on mass-transfer processes to the material surfaces. Experimental approaches to investigate transport processes that are caused by water contact are presented. For tailoring the tests, relevant aging exposure types and release quantification methods must be combined appropriately. Several studies on the release of hazardous substances such as metals, polyaromatic hydrocarbons, flame retardants, antioxidants, and carbon nanotubes from polymers are summarized exemplarily. Differences between natural and artificial exposure tests are discussed and demonstrated for the release of flame retardants from several polymers and for biocides from paints. Requirements and limitations to apply results from short-term artificial environmental exposure tests to predict long-term environmental behavior of polymers are presented

    Environmental Impact of Construction Products on Aquatic Systems—Principles of an Integrated Source–Path–Target Concept

    No full text
    Buildings exposed to water can release undesirable substances which, once transported to environmental compartments, may cause unwanted effects. These exposure pathways need to be investigated and included in risk assessments to safeguard water quality and promote the sustainability of construction materials. The applied materials, exposure conditions, distribution routes and resilience of receiving compartments vary considerably. This demonstrates the need for a consistent concept that integrates knowledge of emission sources, leaching processes, transport pathways, and effects on targets. Such a consistent concept can serve as the basis for environmental risk assessment for several scenarios using experimentally determined emissions. Typically, a source–path–target concept integrates data from standardized leaching tests and models to describe leaching processes, the distribution of substances in the environment and the occurrence of substances at different points of compliance. This article presents an integrated concept for assessing the environmental impact of construction products on aquatic systems and unravels currently existing gaps and necessary actions. This manuscript outlines a source–path–target concept applicable to a large variety of construction products. It is intended to highlight key elements of a holistic evaluation concept that could assist authorities in developing procedures for environmental risk assessments and mitigation measures and identifying knowledge gaps
    corecore