2 research outputs found

    Validation of EN ISO method 10273-Detection of pathogenic Yersinia enterocolitica in foods

    Get PDF
    EN ISO 10273 method for the detection of pathogenic Yersinia enterocolitica in foods was validated in the project Mandate M/381 funded by European Commission. A total of 14 laboratories from five European countries participated in the interlaboratory study (ILS) organized during 2013 and 2014. Before the ITS, the method was revised by an international group of experts and the performance of the revised method was assessed in an ILS study. The results are published as a part of the standard EN ISO 10273 revision. The study included three rounds with different sample types; raw milk, iceberg lettuce and minced meat, inoculated with a low and high level of pathogenic Y. enterocolitica strains representing major pathogenic bioserotypes 4/O:3 and 2/O:9. The homogeneity and stability of the samples were verified before dispatching them to the laboratories. The results demonstrated the method sensitivity of 96% in raw milk, 97% in minced meat, and 98% in lettuce at high inoculation level of pathogenic Y. enterocolitica. The specificity was 100% in raw milk, 96% in minced meat, and 98% in lettuce. The level of detection, LOD50, varied between study rounds, being 9.4 CFU/25 ml in raw milk, 9.9 CFU/25 g in minced meat and 63 CFU/25 g in lettuce samples. During the study, confirmation by using real-time PCR method ISO/TS 18867 together with pyrazinamidase testing was also validated, as alternative to conventional biochemical confirmation. When comparing different isolation steps used in the revised method during the study rounds, PSB enrichment and plating on CIN after alkaline (KOH) treatment showed the highest sensitivity (52-92%) in raw milk and minced meat samples. In lettuce samples, however, ITC with KOH treatment before plating on CIN showed higher sensitivity (64% at low level; 82% at high level) than plating on CIN from PSB with KOH treatment (44% at low level; 74% at high level). Statistical analysis of different isolation steps supported the use of two enrichment media, PSB and ITC, in the revised method. Recovery of pathogenic Y. enterocolitica on ON was most efficient after KOH treatment and, based on the analysis, plating on CIN agar without KOH treatment could be left as optional procedure in the method.Peer reviewe

    Whole-Genome Sequence Comparisons of Listeria monocytogenes Isolated from Meat and Fish Reveal High Inter- and Intra-Sample Diversity

    No full text
    Interpretation of whole-genome sequencing (WGS) data for foodborne outbreak investigations is complex, as the genetic diversity within processing plants and transmission events need to be considered. In this study, we analyzed 92 food-associated Listeria monocytogenes isolates by WGS-based methods. We aimed to examine the genetic diversity within meat and fish production chains and to assess the applicability of suggested thresholds for clustering of potentially related isolates. Therefore, meat-associated isolates originating from the same samples or processing plants as well as fish-associated isolates were analyzed as distinct sets. In silico serogrouping, multilocus sequence typing (MLST), core genome MLST (cgMLST), and pangenome analysis were combined with screenings for prophages and genetic traits. Isolates of the same subtypes (cgMLST types (CTs) or MLST sequence types (STs)) were additionally compared by SNP calling. This revealed the occurrence of more than one CT within all three investigated plants and within two samples. Analysis of the fish set resulted in predominant assignment of isolates from pangasius catfish and salmon to ST2 and ST121, respectively, potentially indicating persistence within the respective production chains. The approach not only allowed the detection of distinct subtypes but also the determination of differences between closely related isolates, which need to be considered when interpreting WGS data for surveillance
    corecore