52 research outputs found

    Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation

    Get PDF
    High concentrations of heavy metals (HM) in the soil have detrimental effects on ecosystems and are a risk to human health as they can enter the food chain via agricultural products or contaminated drinking water. Phytoremediation, a sustainable and inexpensive technology based on the removal of pollutants from the environment by plants, is becoming an increasingly important objective in plant research. However, as phytoremediation is a slow process, improvement of efficiency and thus increased stabilization or removal of HMs from soils is an important goal. Arbuscular mycorrhizal (AM) fungi provide an attractive system to advance plant-based environmental clean-up. During symbiotic interaction the hyphal network functionally extends the root system of their hosts. Thus, plants in symbiosis with AM fungi have the potential to take up HM from an enlarged soil volume. In this review, we summarize current knowledge about the contribution of the AM symbiosis to phytoremediation of heavy metal

    Multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis.

    Get PDF
    In nature, the root systems of most plants develop intimate symbioses with glomeromycotan fungi that assist in the acquisition of mineral nutrients and water through uptake from the soil and direct delivery into the root cortex. Root systems are endowed with a strong, environment-responsive architectural plasticity that also manifests itself during the establishment of arbuscular mycorrhizal (AM) symbioses, predominantly in lateral root proliferation. In this review, we collect evidence for the idea that AM-induced root system remodeling is regulated at several levels: by AM fungal signaling molecules and by changes in plant nutrient status and distribution within the root system

    Arbuscular mycorrhizal phenotyping: the dos and don'ts.

    Get PDF
    not applicable for letterCONICYT Leverhulm

    Characterizing variation in mycorrhiza effect among diverse plant varieties

    Get PDF
    Exploitation of arbuscular mycorrhizal fungi may be an important approach for development of reduced-input agriculture. We discuss the use of linear models to analyze variation in mycorrhiza response among diverse plant varieties in order to assess the value of mycorrhizas. Our approach allows elimination of variation linked to differences in plant performance in the absence of mycorrhizas and the selection of plant lines that might harbor genetic variation of use to improve the mycorrhizal symbiosis in agriculture. We illustrate our approach by applying it to previously published and to novel data. We suggest that in dealing with a relative trait such as mycorrhiza effect, the choice of measure used to quantify the trait greatly affects interpretation. In the plant populations under consideration, we find evidence for a greater potential to increase mycorrhiza benefit than previously suggeste

    Visualising an invisible symbiosis

    Get PDF
    Funder: Cambridge Commonwealth, European and International Trust; Id: http://dx.doi.org/10.13039/501100003343Societal Impact Statement: Despite the vast abundance and global importance of plant and microbial species, the large majority go unnoticed and unappreciated by humans, contributing to pressing issues including the neglect of study and research of these organisms, the lack of interest and support for their protection and conservation, low microbial and botanical literacy in society, and a growing disconnect between people and nature. The invisibility of many of these organisms is a key factor in their oversight by society, but also points to a solution: sharing the wealth of visual data produced during scientific research with a broader audience. Here, we discuss how the invisible can be visualised for a public audience, and the benefits it can bring. Summary: Whether too small, slow or concealed, the majority of species on Earth go unseen by humans. One such rather unobservable group of organisms are the arbuscular mycorrhizal (AM) fungi, who form beneficial symbioses with plants. AM symbiosis is ubiquitous and vitally important globally in ecosystem functioning, but partly as a consequence of its invisibility, it receives disproportionally little attention and appreciation. Yet AM fungi, and other unseen organisms, need not remain overlooked: from decades of scientific research there exists a goldmine of visual data, which if shared effectively we believe can alleviate the issues of low awareness. Here, we use examples from our experience of public engagement with AM symbiosis as well as evidence from the literature to outline the diverse ways in which invisible organisms can be visualised for a broad audience. We highlight outcomes and knock‐on consequences of this visualisation, ranging from improved human mental health to environmental protection, making the case for researchers to share their images more widely for the benefit of plants (and fungi and other overlooked organisms), people and planet

    Full establishment of arbuscular mycorrhizal symbiosis in rice occurs independently of enzymatic jasmonate biosynthesis.

    Get PDF
    Development of the mutualistic arbuscular mycorrhiza (AM) symbiosis between most land plants and fungi of the Glomeromycota is regulated by phytohormones. The role of jasmonate (JA) in AM colonization has been investigated in the dicotyledons Medicago truncatula, tomato and Nicotiana attenuata and contradicting results have been obtained with respect to a neutral, promotive or inhibitory effect of JA on AM colonization. Furthermore, it is currently unknown whether JA plays a role in AM colonization of monocotyledonous roots. Therefore we examined whether JA biosynthesis is required for AM colonization of the monocot rice. To this end we employed the rice mutant constitutive photomorphogenesis 2 (cpm2), which is deficient in JA biosynthesis. Through a time course experiment the amount and morphology of fungal colonization did not differ between wild-type and cpm2 roots. Furthermore, no significant difference in the expression of AM marker genes was detected between wild type and cpm2. However, treatment of wild-type roots with 50 μM JA lead to a decrease of AM colonization and this was correlated with induction of the defense gene PR4. These results indicate that JA is not required for AM colonization of rice but high levels of JA in the roots suppress AM development likely through the induction of defense.CG was supported by a PhD fellowship of the German National Merit Foundation (Studienstiftung des Deutschen Volkes); http://www.studienstiftung.de/ and the Roche Foundation (Switzerland). Research in the UP laboratory was supported by the SNF 'professeur boursier' grants PP00A-110874 and PP00P3-130704; http://www.snf.ch/en/Pages/default.aspx. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.This is the final version of the article. It first appeared from PLOS via http://dx.doi.org/ 10.1371/journal.pone.012342

    Divergence of Evolutionary Ways Among Common sym Genes: CASTOR and CCaMK Show Functional Conservation Between Two Symbiosis Systems and Constitute the Root of a Common Signaling Pathway

    Get PDF
    In recent years a number of legume genes involved in root nodule (RN) symbiosis have been identified in the model legumes, Lotus japonicus (Lotus) and Medicago truncatula. Among them, a distinct set of genes has been categorized as a common symbiosis pathway (CSP), because they are also essential for another mutual interaction, the arbuscular mycorrhiza (AM) symbiosis, which is evolutionarily older than the RN symbiosis and is widely distributed in the plant kingdom. Based on the concept that the legume RN symbiosis has evolved from the ancient AM symbiosis, one issue is whether the CSP is functionally conserved between non-nodulating plants, such as rice, and nodulating legumes. We identified three rice CSP gene orthologs, OsCASTOR, OsPOLLUX and OsCCaMK, and demonstrated the indispensable roles of OsPOLLUX and OsCCaMK in rice AM symbiosis. Interestingly, molecular transfection of either OsCASTOR or OsCCaMK could fully complement symbiosis defects in the corresponding Lotus mutant lines for both the AM and RN symbioses. Our results not only provide a conserved genetic basis for the AM symbiosis between rice and Lotus, but also indicate that the core of the CSP has been well conserved during the evolution of RN symbiosis. Through evolution, CASTOR and CCaMK have remained as the molecular basis for the maintenance of CSP functions in the two symbiosis system
    corecore