4 research outputs found

    Electrochemical taste sensor for unmasking extra-virgin olive oils adulterated with rancid or winey-vinegary olive oils

    Get PDF
    Olive oils may be commercially classified, in a decrease order of quality and economic value, as extra-virgin (EVOO), virgin (VOO) or lampante (LOO) olive oils, being quite prone to frauds. Thus legal protection regulations have been approved by the European Union Commission [1,2], being required the fulfilment of several physicochemical and sensory thresholds [3,4]. Unfortunately, the mixture of expensive olive oils with low quality oils aiming fraudulent economic revenue is still a common practice difficult to detect. In this work, a potentiometric electronic tongue (E-tongue) was used to detect adulteration of an EVOO with different added levels (2.5%, 5%, 10%, 20% and 40%; v/v) of an LOO with an intense sensory defect (rancid or wineyvinegary). Previously, similar electrochemical devices, also comprising lipid polymeric sensor membranes, showed to be able to give qualitative and/or quantitative responses towards basic taste sensations (acid, bitter, salty, sweet, and umami), positive sensory attributes (bitter, fruity, green and pungency) or defects (e.g., butyric, musty, putrid, winey-vinegary and zapateria) [5-8]. The E-tongue coupled with linear discriminant technique (based on the signal profiles of 19 or 20 E-tongue sensors, chosen using a simulated annealing meta-heuristic variable selection algorithm, for rancid and wineyvinegary adulterations, respectively) allowed to semi-quantitatively distinguish olive oils with different adulteration levels (repeated K-fold crossvalidation predictive correct classifications of 84±10% and 94±8% for rancid and winey-vinegary adulterations, respectively). The preliminary results showed the practical potential of the E-tongue as a taste device for the successful detection of EVOOs adulterated with LOO containing organoleptic defects.This work was financially supported by POCI- 01–0145-FEDER-006984–Associate Laboratory LSRE-LCM, Project UID/QUI/00616/2013 –CQVR, Project UID/BIO/04469/2013 – CEB and Project UID/AGR/00690/2013 –CIMO all funded by FEDER, through COMPETE2020, and by national funds through. Nuno Rodrigues thanks FCT, POPH-QREN and FSE for the Ph.D. Grant SFRH/BD/104038/2014.info:eu-repo/semantics/publishedVersio

    Unmasking admixtures of extra virgin olive oils with olive oils containing sensory defects using a multi-sensor taste device

    Get PDF
    Book of Abstracts of CEB Annual Meeting 2017This work was financially supported by Project POCI-01–0145-FEDER-006984 – Associate Laboratory LSRE-LCM, Project UID/QUI/00616/2013 – CQ-VR, Project UID/BIO/04469/2013 - CEB and Project UID/AGR/00690/2013 – CIMO all funded by FEDER - Fundo Europeu de Desenvolvimento Regional through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI) – and by national funds through FCT - Fundação para a Ciência e a Tecnologia, Portugal. Nuno Rodrigues thanks FCT, POPH-QREN and FSE for the Ph.D. Grant (SFRH/BD/104038/2014). Souheib Oueslati is grateful for the support of the Tunisian Ministry of Agriculture.info:eu-repo/semantics/publishedVersio

    A taste sensor device for unmasking admixing of rancid or winey-vinegary olive oil to extra virgin olive oil

    Get PDF
    Electrochemical sensor devices have gathered great attention in food analysis namely for olive oil evaluation. The adulteration of extra-virgin olive oil with lower-grade olive oil is a common worldwide fraudulent practice, which detection is a challenging task. The potentiometric fingerprints recorded by lipid polymeric sensor membranes of an electronic tongue, together with linear discriminant analysis and simulated annealing meta-heuristic algorithm, enabled the detection of extra-virgin olive oil adulterated with olive oil for which an intense sensory defect could be perceived, specifically rancid or winey-vinegary negative sensations. The homemade designed taste device allowed the identification of admixing of extra-virgin olive oil with more than 2.5% or 5% of rancid or winey-vinegary olive oil, respectively. Predictive mean sensitivities of 84±4% or 92±4% and specificities of 79±6% or 93±3% were obtained for rancid or winey-vinegary adulterations, respectively, regarding an internal-validation procedure based on a repeated K-fold cross-validation variant (4 folds×10 repeats, ensuring that the dataset was forty times randomly split into 4 folds, leaving 25% of the data for validation purposes). This performance was satisfactory since, according to the legal physicochemical and sensory analysis, the intentionally adulterated olive oil with percentages of 2.510%, could still be commercialized as virgin olive oil. It could also be concluded that at a 5% significance level, the trained panelists could not distinguish extra-virgin olive oil samples from those adulterated with 2.5% of rancid olive oil or up to 5% of winey-vinegary olive oil. Thus, the electronic tongue proposed in this study can be foreseen as a practical and powerful tool to detect this kind of worldwide common fraudulent practice of high quality olive oil.This work was financially supported by Project POCI-01–0145FEDER-006984 – Associate Laboratory LSRE-LCM, Project UID/QUI/ 00616/2013 – CQ-VR, Project UID/BIO/04469/2013 – CEB and strategic project PEst-OE/AGR/UI0690/2014 – CIMO all funded by FEDER - Fundo Europeu de Desenvolvimento Regional through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI) – and by national funds through FCT - Fundação para a Ciência e a Tecnologia, Portugal. Nuno Rodrigues thanks FCT, POPH-QREN and FSE for the Ph.D. Grant (SFRH/BD/104038/2014). Souheib Oueslati is also grateful for the support of the Tunisian Ministry of Agriculture.info:eu-repo/semantics/publishedVersio

    Electrochemical taste sensor for unmasking extra-virgin olive oils adulterated with rancid or winey-vinegary olive oils.

    Get PDF
    Olive oils may be commercially classified, in a decrease order of quality and economic value, as extra-virgin (EVOO), virgin (VOO) or lampante (LOO) olive oils, being quite prone to frauds. Thus legal protection regulations have been approved by the European Union Commission [1,2], being required the fulfilment of several physicochemical and sensory thresholds [3,4]. Unfortunately, the mixture of expensive olive oils with low quality oils aiming fraudulent economic revenue is still a common practice difficult to detect. In this work, a potentiometric electronic tongue (E-tongue) was used to detect adulteration of an EVOO with different added levels (2.5%, 5%, 10%, 20% and 40%; v/v) of an LOO with an intense sensory defect (rancid or wineyvinegary). Previously, similar electrochemical devices, also comprising lipid polymeric sensor membranes, showed to be able to give qualitative and/or quantitative responses towards basic taste sensations (acid, bitter, salty, sweet, and umami), positive sensory attributes (bitter, fruity, green and pungency) or defects (e.g., butyric, musty, putrid, winey-vinegary and zapateria) [5-8]. The E-tongue coupled with linear discriminant technique (based on the signal profiles of 19 or 20 E-tongue sensors, chosen using a simulated annealing meta-heuristic variable selection algorithm, for rancid and wineyvinegary adulterations, respectively) allowed to semi-quantitatively distinguish olive oils with different adulteration levels (repeated K-fold crossvalidation predictive correct classifications of 84±10% and 94±8% for rancid and winey-vinegary adulterations, respectively). The preliminary results showed the practical potential of the E-tongue as a taste device for the successful detection of EVOOs adulterated with LOO containing organoleptic defects.This work was financially supported by POCI- 01–0145-FEDER-006984–Associate Laboratory LSRE-LCM, Project UID/QUI/00616/2013 –CQVR, Project UID/BIO/04469/2013 – CEB and Project UID/AGR/00690/2013–CIMO all funded by FEDER, through COMPETE2020, and by national funds through. Nuno Rodrigues thanks FCT, POPH-QREN and FSE for the Ph.D. Grant SFRH/BD/104038/2014.info:eu-repo/semantics/publishedVersio
    corecore