25 research outputs found

    The Mechanism of Regulated Release of Lasso/Teneurin-2

    Get PDF
    Teneurins are large cell-surface receptors involved in axon guidance. Teneurin-2 (also known as latrophilin-1-associated synaptic surface organizer (Lasso)) interacts across the synaptic cleft with presynaptic latrophilin-1, an adhesion G-protein-coupled receptor that participates in regulating neurotransmitter release. Lasso-latrophilin-1 interaction mediates synapse formation and calcium signaling, highlighting the important role of this trans-synaptic receptor pair. However, Lasso is thought to be proteolytically cleaved within its ectodomain and released into the medium, making it unclear whether it acts as a proper cell-surface receptor or a soluble protein. We demonstrate here that during its intracellular processing Lasso is constitutively cleaved at a furin site within its ectodomain. The cleaved fragment, which encompasses almost the entire ectodomain of Lasso, is potentially soluble; however, it remains anchored on the cell surface via its non-covalent interaction with the transmembrane fragment of Lasso. Lasso is also constitutively cleaved within the intracellular domain (ICD). Finally, Lasso can be further proteolytically cleaved within the transmembrane domain. The third cleavage is regulated and releases the entire ectodomain of Lasso into the medium. The released ectodomain of Lasso retains its functional properties and binds latrophilin-1 expressed on other cells; this binding stimulates intracellular Ca2+ signaling in the target cells. Thus, Lasso not only serves as a bona fide cell-surface receptor, but also as a partially released target-derived signaling factor

    Latrophilins as Novel Biomarkers for Leukaemia Diagnostics. WO2016203031A1 2016

    Get PDF
    Leukaemia (blood/bone marrow cancer) affects over 250,000 people per year worldwide, with a potentially high mortality rate depending on the type of disease, age at onset and response to treatment–related toxicity. Since leukaemia affects a large number of children and elderly people, this discovery is crucially important for public health. High mortality rates can be, in part, ascribed to current treatments, which consist of aggressive chemotherapy and stem cell transplantation, and often do not result in effective remission of the disease. This is the result of a lack of understanding of the molecular mechanisms that allow malignant cells to escape host immune attack involving cytotoxic T lymphocytes and Natural Killer (NK) lymphoid cells. Our work led to a fundamental non-incremental breakthrough in understanding of the pathophysiology of leukaemia. We have recently discovered that acute myeloid leukaemia (AML) cells possess a unique biochemical pathway that allows these cells to escape the human body’s own anti-cancer immune defences. This pathological immunoprotective pathway does not exist in healthy blood cells, but develops as a result of malignant transformation. Importantly we discovered a novel biomarker of AML, which unlike other known biomarkers is expressed only in malignant and not in healthy cells

    Catching Latrophilin With Lasso: A Universal Mechanism for Axonal Attraction and Synapse Formation

    Get PDF
    Latrophilin-1 (LPHN1) was isolated as the main high-affinity receptor for α-latrotoxin from black widow spider venom, a powerful presynaptic secretagogue. As an adhesion G-protein-coupled receptor, LPHN1 is cleaved into two fragments, which can behave independently on the cell surface, but re-associate upon binding the toxin. This triggers intracellular signaling that involves the Gαq/phospholipase C/inositol 1,4,5-trisphosphate cascade and an increase in cytosolic Ca2+, leading to vesicular exocytosis. Using affinity chromatography on LPHN1, we isolated its endogenous ligand, teneurin-2/Lasso. Both LPHN1 and Ten2/Lasso are expressed early in development and are enriched in neurons. LPHN1 primarily resides in axons, growth cones and presynaptic terminals, while Lasso largely localizes on dendrites. LPHN1 and Ten2/Lasso form a trans-synaptic receptor pair that has both structural and signaling functions. However, Lasso is proteolytically cleaved at multiple sites and its extracellular domain is partially released into the intercellular space, especially during neuronal development, suggesting that soluble Lasso has additional functions. We discovered that the soluble fragment of Lasso can diffuse away and bind to LPHN1 on axonal growth cones, triggering its redistribution on the cell surface and intracellular signaling which leads to local exocytosis. This causes axons to turn in the direction of spatio-temporal Lasso gradients, while LPHN1 knockout blocks this effect. These results suggest that the LPHN1-Ten2/Lasso pair can participate in long- and short-distance axonal guidance and synapse formation

    C-terminal phosphorylation of latrophilin-1/ADGRL1 affects the interaction between its fragments

    Get PDF
    Latrophilin-1 is an Adhesion G protein-coupled receptor, which mediates the effect of α-latrotoxin, causing massive release of neurotransmitters from nerve terminals and endocrine cells. Autoproteolysis cleaves latrophilin-1 into two parts: the extracellular N-terminal fragment (NTF) and the heptahelical C-terminal fragment (CTF). NTF and CTF can exist as independent proteins in the plasma membrane, but α-latrotoxin binding to NTF induces their association and G protein-mediated signaling. We demonstrate here that CTF in synapses is phosphorylated on multiple sites. Phosphorylated CTF has a high affinity for NTF and co-purifies with it on affinity columns and on sucrose density gradients. Dephosphorylated CTF has a lower affinity for NTF and can behave as a separate protein. α-Latrotoxin (and possibly other ligands of latrophilin-1) binds both to the NTF-CTF complex and to receptor-like protein tyrosine phosphatase σ, bringing them together. This leads to CTF dephosphorylation and facilitates CTF release from the complex. We propose that ligand-dependent phosphorylationdephosphorylation of latrophilin-1 could affect the interaction between its fragments and its functions as a G protein-coupled receptor

    Proteolytically released Lasso/teneurin-2 induces axonal attraction by interacting with latrophilin-1 on growth cones

    Get PDF
    A presynaptic adhesion G-protein-coupled receptor, latrophilin-1, and a postsynaptic transmembrane protein, Lasso/teneurin-2, are implicated in trans-synaptic interaction that contributes to synapse formation. Surprisingly, during neuronal development, a substantial proportion of Lasso is released into the intercellular space by regulated proteolysis, potentially precluding its function in synaptogenesis. We found that released Lasso binds to cell-surface latrophilin-1 on axonal growth cones. Using microfluidic devices to create stable gradients of soluble Lasso, we show that it induces axonal attraction, without increasing neurite outgrowth. Using latrophilin-1 knockout in mice, we demonstrate that latrophilin-1 is required for this effect. After binding latrophilin-1, Lasso causes downstream signaling, which leads to an increase in cytosolic calcium and enhanced exocytosis, processes that are known to mediate growth cone steering. These findings reveal a novel mechanism of axonal pathfinding, whereby latrophilin-1 and Lasso mediate both short-range interaction that supports synaptogenesis, and long-range signalling that induces axonal attraction

    Adhesion Class GPCRs in GtoPdb v.2023.1

    Get PDF
    Adhesion GPCRs are structurally identified on the basis of a large extracellular region, similar to the Class B GPCR, but which is linked to the 7TM region by a GPCR autoproteolysis-inducing (GAIN) domain [10] containing a GPCR proteolysis site (GPS). The N-terminal extracellular region often shares structural homology with adhesive domains (e.g. cadherins, immunolobulin, lectins) facilitating inter- and matricellular interactions and leading to the term adhesion GPCR [104, 418]. Several receptors have been suggested to function as mechanosensors [320, 288, 396, 38]. Cryo-EM structures of the 7-transmembrane domain of several adhesion GPCRs have been determined recently [292, 21, 403, 212, 300, 302, 431, 293]. The nomenclature of these receptors was revised in 2015 as recommended by NC-IUPHAR and the Adhesion GPCR Consortium [125]

    Adhesion Class GPCRs (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Adhesion GPCRs are structurally identified on the basis of a large extracellular region, similar to the Class B GPCR, but which is linked to the 7TM region by a GPCR autoproteolysis-inducing (GAIN) domain [8] containing a GPCR proteolytic site. The N-terminus often shares structural homology with adhesive domains (e.g. cadherins, immunolobulin, lectins) facilitating inter- and matricellular interactions and leading to the term adhesion GPCR [82, 332]. Several receptors have been suggested to function as mechanosensors [254, 234, 315, 32]. The nomenclature of these receptors was revised in 2015 as recommended by NC-IUPHAR and the Adhesion GPCR Consortium [100]

    Adhesion Class GPCRs in GtoPdb v.2021.3

    Get PDF
    Adhesion GPCRs are structurally identified on the basis of a large extracellular region, similar to the Class B GPCR, but which is linked to the 7TM region by a GPCR autoproteolysis-inducing (GAIN) domain [9] containing a GPCR proteolytic site. The N-terminus often shares structural homology with adhesive domains (e.g. cadherins, immunolobulin, lectins) facilitating inter- and matricellular interactions and leading to the term adhesion GPCR [101, 403]. Several receptors have been suggested to function as mechanosensors [309, 280, 383, 35]. The nomenclature of these receptors was revised in 2015 as recommended by NC-IUPHAR and the Adhesion GPCR Consortium [122]
    corecore