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Abstract 

Latrophilin-1 is an Adhesion G protein-coupled receptor, which mediates the effect of α-

latrotoxin, causing massive release of neurotransmitters from nerve terminals and endocrine 

cells. Autoproteolysis cleaves latrophilin-1 into two parts: the extracellular N-terminal fragment 

(NTF) and the heptahelical C-terminal fragment (CTF). NTF and CTF can exist as independent 

proteins in the plasma membrane, but α-latrotoxin binding to NTF induces their association and 

G protein-mediated signaling. We demonstrate here that CTF in synapses is phosphorylated 

on multiple sites. Phosphorylated CTF has a high affinity for NTF and co-purifies with it on 

affinity columns and on sucrose density gradients. Dephosphorylated CTF has a lower affinity 

for NTF and can behave as a separate protein. α-Latrotoxin (and possibly other ligands of 

latrophilin-1) binds both to the NTF-CTF complex and to receptor-like protein tyrosine 

phosphatase σ, bringing them together. This leads to CTF dephosphorylation and facilitates 

CTF release from the complex. We propose that ligand-dependent phosphorylation-

dephosphorylation of latrophilin-1 could affect the interaction between its fragments and its 

functions as a G protein-coupled receptor.  
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Introduction 

Latrophilin (LPHN1, or ADGRL1 in the new nomenclature1) is a classical representative of 

Adhesion G protein-coupled receptors (Adhesion GPCRs). It was discovered due to its 

interaction with α-latrotoxin (α-LTX) from black widows spider venom2–5. Latrophilin was one of 

the first GPCRs to be recognized as an unusual receptor belonging to a new group, which is 

now known as Adhesion GPCRs.  

Adhesion GPCRs are a large family within the superfamily of GPCRs. They are ancient 

proteins, found in all vertebrates as well as in primitive and unicellular metazoans, and even in 

fungi (reviewed in Ref. 1). Adhesion GPCRs are thought to convert physical extracellular 

interactions into intracellular signaling and may have evolved to help cells communicate with 

the environment and with each other, a feature that could contribute to the evolution of 

multicellularity in metazoans. Adhesion GPCRs feature some unusual structural characteristics 

that clearly distinguish them from the rest of GPCRs: a long N-terminal extracellular domain 

which contains a variable number of very diverse cell-adhesion modules, a conserved 

extracellular “GPCR autoproteolysis-inducing” (GAIN) domain, which is unique to Adhesion 

GPCRs, and a long cytoplasmic C-terminal tail6. Autoproteolysis within the GAIN domain occurs 

in most members of this family and breaks the proteins into two parts: N-terminal fragment 

(NTF) and C-terminal fragment (CTF). The functional association and dissociation of the NTF 

and CTF have been first studied in LPHN14,7,8. 

The NTF does not have a transmembrane domain, but can anchor on the cell surface by 

forming a strong complex with the CTF4 or via an unknown membrane anchor7. In contrast, the 

CTF is essentially a classical GPCR9, with a very short N-terminal ectodomain (18 amino acids) 
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and a long cytosolic tail (~350 residues). The very N-terminal 7 amino acids of CTF (called a 

Stachel peptide) are important for the interaction between the NTF and CTF7,10,11. 

In LPHN1, the two fragments have been shown to behave as partially independent proteins on 

the cell surface7,8 (see also Discussion). All known ligands of LPHN1 (its natural agonist α-LTX 

and its physiological partners: teneurin-212, FLRT-313, and contactin-614) interact with its NTF. 

At least α-LTX and teneurin-2 induce NTF and CTF association and formation of large receptor 

complexes, generating intracellular signals7,8,12,15,16. α-LTX, a potent presynaptic neurotoxin 

that triggers strong release of neurotransmitters from neuronal and endocrine cells17, is the best 

known agonist for LPHN1 and is most useful to study LPHN1. First, it has the highest affinity 

for LPHN1 and does not dissociate from it during affinity chromatography under stringent 

conditions. Second, it is evolutionarily adapted to cause strong signaling, which cannot be 

achieved with more physiological ligands. Finally, most interesting facts about the LPHN1 

architecture and functions have been discovered due to the use of α-LTX17. However, wild-type 

α-LTX also forms Ca2+-permeable pores in biological membranes18, creating a technical 

problem when detecting intracellular signaling. Therefore, a mutant LTXN4C(19), which does not 

form membrane pores7,20, has been primarily used to study the LPHN1-mediated intracellular 

signaling. It has been shown7,20–25 that LTXN4C binding to the NTF induces its association with 

the CTF and stimulates a G-protein signaling cascade (Gαq → phospholipase C (PLC) → 

inositol(1,4,5)trisphosphate → release of stored Ca2+) and thus leads to potentiation of 

exocytosis.  

However, very little is still known about the regulation of the CTF signaling functions. In 

particular, GPCRs are known to be regulated by phosphorylation26–28, yet, to date, 
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phosphorylation of any Adhesion GPCRs was reported in one publication only29, where the 

application of a mechanical force to the NTF of CD97 (ADGRE5) was shown to cause 

phosphorylation of the CTF, which altered its intracellular coupling. This suggests that CTF 

phosphorylation may play an important role in Adhesion GPCR functions and needs to be 

carefully studied. 

Here, we demonstrate that the CTF of LPHN1 in neuronal nerve terminals is normally 

phosphorylated on multiple sites. We also show that the phosphorylated CTF species have a 

high affinity for the NTF and form stable complexes with it, while dephosphorylated CTF has a 

lower affinity for NTF and can exist separately from the NTF. The binding of α-LTX to the NTF 

induces NTF-CTF coupling and also recruits receptor-like protein tyrosine phosphatase σ 

(RPTPσ1) to the complex, leading to CTF dephosphorylation and a decrease in its affinity for 

the NTF. Our findings suggest that LPHN1 functioning as a two-subunit complex may be 

regulated by the phosphorylation of its CTF. This study provides a first glimpse into the role of 

phosphorylation in the dynamic structure of Adhesion GPCRs and calls for an in-depth 

investigation of this phenomenon. 

Experimental Procedures 

Materials 

The following primary antibodies were used to stain LPHN1 fragments and other proteins. NTF: 

rabbit polyclonal anti-peptide antibody PAL130 (immune IgG against 

CYAFNTNANREEPVSLAFPNP); affinity-purified rabbit polyclonal antibody RL1 (against the 

whole rat NTF)2. CTF: affinity purified rabbit polyclonal antibody R4 (against the cytosolic tail of 
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rat CTF)31; chicken polyclonal anti-peptide IgY CCT (against C-terminal peptide 

CEGPGPDGDGQMQLVTSL. Neurexin Iα: affinity-purified rabbit polyclonal anti-peptide 

antibody 116-1 (produced in-house against rat peptide CSANKNKKNKDKEYYV)31. Receptor-

like protein tyrosine phosphatase σ (RPTPσ1): goat polyclonal IgG against the extracellular 

fragment of mouse RPTPσ (R&D Systems). Antibodies recognizing phosphorylated amino 

acids: anti-phosphoserine mouse monoclonal antibody (16B4, Sigma-Aldrich); anti-

phosphotyrosine mouse monoclonal antibody (2C8, Sigma-Aldrich); anti-phosphothreonine 

rabbit monoclonal antibody (Sigma-Aldrich). All chemical reagents were from Sigma-Aldrich, 

unless otherwise stated. 

Fractionation of brain membranes 

Male Sprague-Dawley rats (150 g) were purchased from Charles River UK. In some 

experiments, male C57BL/6 mice (Charles River UK) were used in parallel with the LPHN1 

knockout mouse strain AG148, obtained in-house16 and back-crossed onto C57BL/6 

background. The brains were removed from animals within 30 s of Schedule 1 and 

homogenized with 10 strokes of a Potter-Elvehjem homogenizer (clearance 0.2 mm) in 0.32 M 

sucrose, 10 mM HEPES, pH 7.4, supplemented with protease inhibitors (see below). This Total 

Brain homogenate (TB) was centrifuged for 2 min, at 2,200 x g in a table-top centrifuge 

(Heraeus) to yield a pellet P1 (containing nuclei, large fragments of neuronal and glial cell 

bodies, and connective tissue) and a supernatant S1 (containing crude post-nuclear 

membranes: synapses, broken dendrites and axons, and somal cytosol and intracellular 

membranes). The S1 was further centrifuged for 20 min, at 12,000 x g using a Sorvall SS34 

rotor (Beckman) to yield pellet P2 (containing crude post-nuclear membranes and lacking somal 
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cytosol and intracellular membranes), and supernatant S2 (containing cytosol, somal vesicles, 

and broken membranes). P2 was further separated by 1 h centrifugation at 64,000 x g on step-

wise Ficoll gradients (7.5% and 12.5% Ficoll) to isolate synaptosomes32. The synaptosomes 

were recovered from the 7.5%/12% Ficoll interface. To remove the Ficoll, the synaptosomes 

were washed twice by resuspension/centrifugation in a physiological buffer containing (in mM): 

NaCl, 132; KCl, 5; MgSO4, 2.5; EGTA, 0.1; D-glucose, 10; HEPES, 20 (pH 7.4). To obtain 

synaptosomal plasma membranes (SPM), synaptosomes were osmotically lysed in 30 ml of 

ice-cold 10 mM Tris-HCl, pH 7.6, containing 50 µM CaCl2 and protease inhibitors. The lysate 

was subjected to three freeze/thaw cycles at –70 ºC, after which it was centrifuged for 1 h, at 

100,000 x g, at 4 ºC, to yield SPM and supernatant S3. S3 was used for synaptic vesicle 

purification. All membrane fractions were used for LPHN1 purification (see below).  

Affinity purification of LPHN1  

An α-LTX column was synthesized by immobilizing 1 mg of highly purified α-LTX33 on 1 mL of 

CNBr-activated Sepharose-4CL (Sigma-Aldrich). To optimize LPHN1 extraction, different 

detergents (Thesit, Triton X-100, or CHAPS) were tested. Respective membrane pellets were 

re-suspended in TBS buffer (50 mM Tris-HCl, pH 7.6, 0.2 M NaCl) containing 2 mM EDTA and 

2% detergent, incubated for 2 h, at 4ºC, then centrifuged for 20 min, at 20,000 x g and the 

supernatants were mixed with a 6X loading buffer for SDS-polyacrylamide gel-electrophoresis 

(SDS-PAGE) (see below). Thesit proved to be optimal for LPHN1 extraction and was used in 

all affinity chromatographies. All buffers also contained protease inhibitors: 104 mM AEBSF, 80 

μM aprotinin, 4 mM bestatin, 1.4 mM E-64, 2 mM leupeptin and 1.5 mM pepstatin A (Sigma-

Aldrich). As described under Results, a phosphatase inhibitors (PPI) cocktail (final 
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concentrations: 2 mM imidazole, 1 mM NaF, 1.2 mM sodium molybdate, 1 mM sodium 

orthovanadate, and 4 mM sodium tartrate dihydrate) (Sigma-Aldrich), or at least 100 mM 

activated sodium orthovanadate, was added where appropriate. The solubilized membranes 

were cleared by centrifugation for 20 min, at 20,000 x g and diluted 3-fold with TBS. Preparative 

affinity chromatography of LPHN1 was carried out on a freshly prepared 1-mL α-LTX-column; 

analytical purification of LPHN1 from the lysates obtained from different membrane fractions 

was conducted using 50 μL of the α-LTX-column. The lysates were incubated with the α-LTX 

column overnight, at 4ºC. The beads were then washed with 50 column volumes of TBS 

containing 0.2% Thesit (TBT), then with 20 column volumes of 0.5 NaCl in TBT and then eluted 

with 2 M NaCl in TBT or with SDS-PAGE Sample Buffer to ensure complete removal of LPHN1 

from the gel matrix.  

For additional LPHN1 purification, diluted high salt eluates from α-LTX affinity chromatography 

(or synaptosomes solubilized as described above) were incubated with 1 ml of wheat germ 

agglutinin (WGA)-Sepharose 4B (Sigma-Aldrich) for 16 h, at 4ºC. The gel was then extensively 

washed with 0.5 M NaCl in TBT, followed by elution with 100 mM N-acetylglucosamine or SDS-

containing sample buffer, as specified under Results. 

LPHN1 deglycosylation  

LPHN1 isolated by LTX affinity chromatography was resuspended in TBT containing 2 mM 

CaCl2 and treated with 10 mU of neuraminidase (Boehringer Mannheim) for 1 h, then denatured 

for 10 min with 1% SDS, supplemented with 1% Triton X-100 to neutralize SDS, and finally 

treated for 1 h with peptide:N-glycosidase F (PNGase, Boehringer Mannheim) and/or O-
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glycosidase (Calbiochem). All incubations were performed at 37ºC and stopped by adding 

SDS-PAGE Loading Buffer. 

Immunoprecipitation  

Purified LPHN1 was incubated with a chicken antibody against a rat CTF peptide (see above), 

overnight, at 4ºC, with rotation. Protein A-Sepharose 4B (Sigma-Aldrich) was added to this 

mixture and incubated for 2 h, at 4ºC. The beads were washed with 0.5 M NaCl in TBT and 

eluted with a 2x SDS sample buffer, before being heated for 30 min at 50ºC and loaded on an 

SDS-gel. 

Sucrose density gradients 

Sucrose density gradient centrifugation was performed essentially as described previously34. 

The gradients consisted of 10 layers of 8 to 17% (w/v) sucrose in TBT and an underlying 1 ml 

cushion of 30% sucrose. These step-wise gradients achieved perfect linearity after 

centrifugation, which was controlled by measuring the density of all fractions. 1-ml samples of 

solubilized membranes were loaded on the top of gradients, which were centrifuged for 16 h at 

165,000 x g in an SW40Ti rotor, at 4ºC. After centrifugation, 0.5-ml fractions were collected, 

starting from the bottom of the tube, and analyzed by SDS-PAGE and Western blotting.  

CTF dephosphorylation 

Purified native LPHN1 was treated at 37ºC for 1 h with 1 unit of a recombinant alkaline 

phosphatase (Sigma-Aldrich) in the presence of 5 mM Tris, pH 9.8, 1 mM MgCl2 and 0.1 mM 
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ZnCl2. Samples were collected at regular time intervals, titrated to pH 6.8, and analyzed by 

SDS-PAGE and Western blotting. PPI cocktail (see above) was used in some experiments.  

LPHN1 125I-iodination  

LPHN1 was purified from P2 membranes on an α-LTX-column in the presence of protease 

inhibitors and PPIs, as described above, and eluted from the column with TBT containing 2 mM 

EDTA and 2 M NaCl. The receptor was then desalted on a Bio-Gel P-10 column (Bio-Rad) 

equilibrated in TBT and concentrated to ~54 nM using centrifugal ultrafiltration units (Amicon 

Ultra-15, Merck), at 4°C. A 100-µL aliquot of this solution containing 1 µg of LPHN1 was mixed 

with 5 µL Na125I (18.5 MBq), 7.5 μL of 2.8 mM chloramine T and TBT to 150 µL, and incubated 

for 1 min, with periodic up-down pipetting. The reaction was stopped by the addition of 7.5 μL 

of 3.7 mM Na2S205 and 50 μL of 160 mM NaI in TBT, mixed and immediately loaded on the top 

of a Bio-Gel P-10 column pre-equilibrated in TBT containing 0.1% BSA. The column was eluted 

by sequential addition of 0.5 mL aliquots of TBT to the gel top and collection of respective 

fractions. Fractions (2-6) containing the radioactive protein were combined; protein recovery 

was about 90% in non-radioactive pilot experiments.  

LPHN1 32P-phosphorylation  

Synaptosomes (Syn) were isolated from rat brain cortex, as described above, resuspended in 

5 mL of buffer containing (in mM): NaCl, 140; KCl, 3; MgCl2; 1, CaCl2, 2; D-glucose, 5.6; 

HEPES-NaOH, 10, pH 7.4; and equilibrated at 23°C for 10 min, with constant oxygenation. The 

reaction was initiated by adding [32P]orthophosphate (18,5 MBq). The final concentrations of 

PO4
3- was 1 μM. The reaction proceeded for 1 h and was terminated by the addition of an equal 
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volume of ice-cold PBS containing 2% Triton X-100, 20 mM EDTA and PPIs. After a 2 h 

incubation at 4°C, solubilized proteins were cleared by centrifugation at 20,000 x g for 20 min, 

at 4°C. The lysate was diluted to 0.2% Thesit and incubated with a 50 μL LTX-column for 2 h, 

at 4°C; the column was washed and eluted with SDS Loading Buffer. The proteins were then 

resolved by SDS-PAGE and visualized by autoradiography and Western blotting. Prior to SDS-

PAGE, some samples were boiled for 5 min (see Results).  

[32P]-Phosphorylation of COS7 cells, transiently transfected with LPHN1 or an empty vector, 

was carried out by adding 32PO4
3- (18.5 MBq) to the culture medium 6 h after transfection, 

followed by overnight incubation at 37°C and 5% CO2. The cells were harvested from the plates 

in PBS containing 1% Thesit, incubated for 1 h, centrifuged at 20,000 x g, at 4°C, and the 

supernatants were analyzed by SDS-PAGE and Western blotting.  

SDS-gel electrophoresis 

Discontinuous SDS-PAGE was performed according to Laemmli35 using BioRad Mini-Protean 

II apparatus. Liquid protein samples were mixed with 2X-6X Loading Buffer, which contained 

100 mM dithiothreitol (DTT) (final concentration). Before loading onto gels, samples were 

heated for 2-5 min at 100ºC or for 30 min at 37-50ºC. To perform SDS-PAGE in the presence 

of urea, the resolving gel, stacking gel and loading buffer were supplemented with 

electrophoresis grade 8 M urea (Sigma-Aldrich). Protein samples containing urea were only 

heated to 37ºC. Electrophoresis was carried out at 100 V and, when the samples reached the 

resolving gel, at 150 V. 
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Prior to SDS-PAGE dilute samples were concentrated by protein precipitation, according to one 

of the following methods. Method 1: two volumes of a 1:1 chloroform/methanol mixture was 

added to one volume of sample, followed by thorough mixing and a brief centrifugation. The 

precipitate recovered from the solvent-water interface was washed once with methanol and 

then dried in air. Method 2: ice-cold trichloroacetic acid was added to samples to a final 

concentration of 10%, the mixture was left on ice for 20 min and then centrifuged for 30 min, at 

25,000 x g and 4ºC. After the removal of the supernatant, the pellet was washed with ice-cold 

acetone, then dried in air. Resulting sample pellets were dissolved in 1X Loading Buffer and 

heated as described above. 

Western blotting 

Proteins separated in SDS-gels were transferred onto polyvinylidene fluoride (PVDF) 

membranes, using a wet electrophoretic transfer unit, in a Tris-glycine buffer containing 20% 

methanol. The membranes were blocked using 5% non-fat milk (or 3% BSA), 0.1% Tween in 

PBS (PBST) overnight and washed 5 times with PBST. The blots were then incubated for 1 h 

with respective primary antibodies, washed 5 times with PBST and incubated for 1 h with 

matching horseradish peroxidase-conjugated secondary antibodies (Sigma-Aldrich). After 

additional 5 washes with PBST, the immunostained proteins were visualized using the 

enhanced chemiluminescence technique, as specified by the manufacturer (Millipore).  

The images were obtained by exposure to Kodak BioMax XAR film (Sigma-Aldrich) or digitally 

captured using a LAS-3000 gel imager at a maximal resolution (Fujifilm). Multiple exposures 

were taken to determine the linear response range of the film/detection camera for each protein. 

Radioactive proteins were detected by exposure of the blots to Kodak BioMax XAR film over 
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16-72 h; 32P exposure was carried out at –70ºC using an intensifying screen. Exposed film was 

digitized by optical scanning at 600-1200 dpi resolution, in the transparency mode. Digitized 

images were analyzed by computer-aided densitometry using the image processing software 

Fiji (NHS). 

Affinity purification of anti-NTF and anti-CTF antibodies 

For affinity purification of RL1 and R4 antibodies, expression constructs were made containing, 

respectively, rat NTF (nucleotides 630–2957) fused with glutathione-S-reductase and rat CTF 

cytosolic tail (nucleotides 3976–4856) fused with dihydrofolate reductase. These constructs 

were expressed in E. coli, isolated by affinity chromatography on, respectively, a glutathione 

column and a Ni2+ column, separated by SDS-PAGE and transferred onto PVDF membranes. 

The membranes were blocked with 5% non-fat milk in PBST and incubated with the respective 

antisera overnight. After several washes with PBS, specific antibodies were eluted from the 

membranes with 0.5 M NaCl, 0.5 M glycine, pH 2.4, and neutralized with Tris base.  

Cell culture 

African green monkey kidney (COS7) and mouse neuroblastoma (NB2a) cell lines were 

maintained at 5% CO2, 37ºC, in multi-well plates (Nunc) in Dulbecco’s modified Eagle’s medium 

(Life Technologies, Inc.) containing 10% fetal bovine serum (NB2a cells were also 

supplemented with GlutamaxTM). Cells were grown to 80% confluence and split 1:6 every 2-3 

days. When passaging, the cells were detached using Trypsin-EDTA (0.05 %). Cells were 

transiently transfected with full-size LPHN1 in pcDNA3.17 using the SuperFect transfection 

reagent (Qiagen), according to the manufacturer’s protocol, and analyzed 24 h later. Stable 
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lines were generated in NB2a cells by FuGene6-aided transfection (Roche Diagnostics), 

followed by G418 (Invitrogen) selection and cell sorting (Becton Dickinson). Stably transfected 

NB2a cell lines were maintained in G418 (300 μg/mL). 

Protein phosphorylation bioinformatics 

The following Internet resources were used to predict phosphorylation consensus sites in the 

full CTF sequence: PhosphoSitePlus (https://www.phosphosite.org/homeAction.action)36, 

NetPhos 2.0 (http://www.cbs.dtu.dk/services/NetPhos-2.0/); NetPhos 3.1b 

(http://www.cbs.dtu.dk/services/NetPhos/); PhosphoMotif Finder 

(http://www.hprd.org/PhosphoMotif_finder); KinasePhos 

(http://kinasephos.mbc.nctu.edu.tw/predict.php) and some other. Potential phosphorylation 

sites detected by the software in the extracellular loops were disregarded.  

Reverse-transcription polymerase chain reaction (RT-PCR) 

Total RNA from NB2a cells was isolated using a High Pure RNA Isolation Kit (Roche). RNA 

concentration and purity was assessed with a Nanodrop 2000 spectrophotometer (Thermo 

Fisher Scientific). cDNA was synthesized using 1 μg total RNA and anchored oligo(dT)18 

primers with the Transcriptor First Strand cDNA Synthesis Kit (Roche). Expression profiles of 

RPTPS1, STIM1, STIM2, and β-actin mRNA were determined using quantitative RT-PCR (qRT-

PCR) performed on a LightCycler 480 (Roche) using SYBR GreenIMaster reaction mix (Roche) 

and specific primers designed using the Lasergene software (DNASTAR) (target gene 

RPTP1S, CCGCTATGTCCTCTTTGTGCTTGC / GCGGGGCTCTGAGTCCTTGCGTTT; 

housekeeping gene β-actin, TTCGCGGGCGACGATGC / GGGGCCACACGCAGCTCATT; 

control genes STIM1, CCGCCCTAACCCCGCCCACT / CCCCCTCAATCAGCCGATGGC and 
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STIM2 TCAGCCGGCAATGATAGCAAG / TGGAAAGCCCCAGTGGAGTTA). Reactions 

began with a 5 min preincubation at 95°C, followed by 40-45 cycles of 10 s at 95°C, 20 s at 

60°C, and 10 s at 72°C. A final elongation step at 72°C continued for 5 min. Fluorescence was 

measured once at 80°C during each cycle. Amplification of correct products was confirmed 

using the LightCycler melting temperature (Tm) analysis. Raw fluorescence data were analyzed 

using LinRegPCR quantitative PCR data analysis program37, which calculated the PCR 

efficiency for each reaction. The initial amount of target cDNA in a sample was determined 

using the following equation: N0 = Nt/Emean
Cq, where N0 is the initial concentration in arbitrary 

fluorescent units; Nt is a fluorescence threshold; Emean is the mean reaction efficiency; and Cq 

is the quantification cycle threshold (when the reaction exceeds the initial concentration, N0). 

For each reaction, the baseline fluorescence was subtracted from the curve. The specificity of 

qRT-PCR was ascertained by including two controls with each reaction: 1 μL of undiluted total 

RNA (to test for residual genomic DNA) and 1 μL of nuclease-free water (to show the specificity 

of cDNA amplification).  

Statistical methods 

The numerical data presented in Figures or text are the means ± SD. The p value was 

calculated using a two-tailed heteroscedastic t-test, with Bonferroni correction in cases of 

multiple pair-wise comparisons. The number of independent experiments n was between 3 and 

12, and is demonstrated by individual data points in the diagrams. The following notation was 

used to denote statistical significance: NS (non-significant), p > 0.05; *, p < 0.05; **, p < 0.01; 

***, p < 0.001. All images are representative of a number of independent experiments (n = 3-

21), which all gave similar results; the specific n for each image is provided in Figure legends. 
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RESULTS 

The CTF is phosphorylated on multiple sites 

LPHN1 can be highly purified from rat brain membranes using an α-LTX affinity column2. To 

analyze possible post-translational modifications of the CTF, it was necessary to optimize its 

SDS-PAGE analysis (Fig. 1). As previously described4, in conventional SDS-PAGE, only the 

NTF can be fully resolved as a band with an apparent molecular mass of ~ 120 kDa, while the 

CTF aggregates and does not enter the gel (Fig. 1A, left). Inclusion of 8 M urea in SDS-gels 

and loading buffer4 allows CTF separation (Fig. 1A, middle). However, on SDS-urea gels both 

the NTF and CTF show abnormal mobility, appearing as diffuse, poorly resolved bands (Fig. 

1A, middle). Interestingly, SDS-PAGE samples containing urea must not be boiled to avoid 

carbamylation of proteins, while normal SDS-PAGE samples are routinely boiled. We 

hypothesized that it was sample boiling (rather than a lack of urea) that caused CTF 

aggregation on normal SDS-gels. Indeed, when LPHN1 sample was heated to 37-50ºC only, 

both of its fragments were perfectly resolved in normal SDS-gels containing no urea (Fig. 1A, 

right). Under these conditions, the NTF appeared as a defined band of 120 kDa, while the CTF 

migrated at 65-75 kDa. Furthermore, the CTF was now clearly resolved into at least 4 distinct 

bands (Fig. 1A, inset). The relative abundance of the major bands (CTF-a,b,c,d) varied between 

different samples (Fig.1B) (see below).  

The nature of the CTF bands was not immediately clear. One possibility was that, in addition to 

LPHN1, LTX-affinity columns could also pull down LPHN2 and 3. The three homologous CTFs 

could have different electrophoretic mobilities and could be recognized by our anti-CTF 

antibodies, giving rise to multiple bands. To rule out this possibility, we performed LTX-affinity 
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chromatography of solubilized P2 membranes from the brains of wild-type and LPHN1 knockout 

mice (Fig. 1C). This experiment demonstrated that mouse CTF had a similar migration pattern 

on SDS-gels as the rat protein, but our anti-CTF antibody did not recognize any proteins in the 

brains that lacked LPHN1 (Fig. 1C, arrowhead). This clearly indicated that the multiple bands 

stained by the anti-CTF antibody belonged to the CTF of LPHN1 only.  

The other possibility was that the CTF could be post-translationally modified, e.g. glycosylated 

or phosphorylated. Treatment of purified LPHN1 with a set of glycohydrolases (Fig. 2A) reduced 

the apparent molecular mass of NTF from 120 kDa to around 105 kDa. Glycosylation of the 

native NTF was confirmed by extended SDS-PAGE in a 4% gel (Fig. 2A, inset). However, there 

was no change in the migration profile of the CTF, indicating that it was probably not 

glycosylated (Fig. 2A). To test for possible phosphorylation, purified LPHN1 was treated with 

alkaline phosphatase, an enzyme that dephosphorylates proteins modified by all types of 

phosphorylation. As a result, the NTF migration was not affected (Fig. 2B), while the 

electrophoretic mobility of the upper three CTF bands gradually increased and all CTF 

eventually migrated as one thick band at the level of CTF-a or slightly lower (65 kDa, Fig. 2B, 

lane 4; Fig. 2C). The specificity of dephosphorylation reaction was confirmed by the inclusion 

of PPIs, which prevented the change in CTF migration pattern (Fig. 2B, lane 5). The 

phosphatase also affected the CTF bands when it was applied to solubilized brain membranes, 

indicating that the CTF bound to its normal partners was still accessible to phosphatases. 

Computer-aided densitometry (Fig. 2C) indicated that the optical density of the 

dephosphorylated CTF band, on average, matched the density of the combined original four 

CTF bands, proving that they all represented one protein with different degrees of 

phosphorylation. The apparent size of the dephosphorylated CTF-a corresponded to that of the 
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CTF from recombinant LPHN1 expressed in COS7 cells (Fig. 2D, lane 1), which traveled as a 

single band and had either no phosphorylation or a low degree of phosphorylation.  

However, even after 2 h exposure to a large concentration of alkaline phosphatase, the CTF 

dephosphorylation seemed to be incomplete, with a fainter secondary band appearing above 

the main CTF band (Fig. 2B, lane 4; 2D, lane 4). We hypothesized that this was due to a 

phosphate group (or groups) resistant to alkaline phosphatase, or to a different type of 

modification, e.g. palmitoylation. When this partially dephosphorylated CTF was treated with 

0.5 M hydroxylamine, which cleaves Cys-palmitoyl thioester linkages, the residual phospho-

band disappeared (Fig. 2D, lane 5). Hydroxylamine itself did not change the migration pattern 

of fully phosphorylated CTF (lane 6), but made it more susceptible to alkaline phosphatase 

(lane 7), indicating that CTF could indeed be S-palmitoylated.  

When CTF was dephosphorylated, its amount often decreased on the blots (Fig. 2D, lane2 vs. 

lanes 3-5), suggesting that the removal of phosphate groups could render the CTF susceptible 

to proteolytic degradation. However, this was unlikely, because all our buffers contained 

protease inhibitors, and the remaining dephosphorylated band appeared to be stable in 

solution. Moreover, we noticed (Fig. 2D, right) that CTF dephosphorylation greatly increased 

its SDS-resistant dimerization (arrowhead 2) and formation of higher complexes. When all CTF 

bands (including its aggregates, but excluding any fragments) were combined and normalized 

to NTF, no loss of CTF bands was observed (Fig. 2E). Thus, CTF dephosphorylation does not 

cause its degradation, but may induce it to form very stable complexes. 

The type of CTF phosphorylation was revealed by staining the protein with antibodies against 

phosphotyrosine, phosphothreonine, and phosphoserine (Fig. 2F, lanes 4, 6, 8). This showed 
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that all three types of phosphorylation were present in the CTF. Even the fastest migrating band 

(CTF-a) appeared to carry more than one phosphate group, on both Tyr and Ser residues (lanes 

4 and 8). The slow migrating bands (CTF-b,c,d) demonstrated differential phosphorylation, but 

most had all three types of phosphoamino acids and, thus, were phosphorylated on multiple 

sites. Analysis of the phosphorylation pattern (not shown) suggested that a minimum of 7 

phosphates could be present in the top band (CTF-d). Alkaline phosphatase treatment removed 

all phosphates from the CTF (Fig. 2F, lanes 3, 5, 7), but the fully dephosphorylated CTF 

migrated on the gel marginally lower than the partially phosphorylated CTF-a (Figs. 2B, D, F).  

To study the dynamics of CTF phosphorylation in nerve terminals, we used radioactive 

phosphate to evaluate the rate with which new phosphate groups could be incorporated into 

the CTF. For this purpose, we incubated freshly purified synaptosomes with [32P]-

orthophosphate for 1 h and then isolated the receptor on an α-LTX column in the presence of 

PPIs, to avoid LPHN1 dephosphorylation by cellular phosphatases. Pure LPHN1 was then 

separated by SDS-PAGE, transferred onto PVDF membrane and exposed to autoradiography 

film (Fig. 2G, lane 1). The following additional experiments were conducted in parallel: (1) after 

autoradiography, the 32P-labeled membrane was immunostained for CTF and NTF (Fig. 2G, 

lanes 3, 5); (2) the CTF blot was additionally exposed for a longer time to demonstrate the 

presence of CTF dimers (lane 4, arrowhead 2); (3) a similar sample of purified LPHN1 was 125I-

iodinated, resolved by SDS-PAGE, and autoradiographed to visualize the major proteins 

present in a LPHN1 preparation (lane 6); (4) some of the 32P- and 125I-labeled samples were 

boiled to identify the CTF (lanes 2, 7). These additional data (including electrophoretic mobility, 

amount present in purified sample and susceptibility to boiling) allowed us to unequivocally 

identify the 32P-phosphorylated bands present in purified LPHN1 (Fig. 2G, lane 1): the CTF-
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b,c,d bands (filled arrowhead, CTF) and the CTF dimer (filled arrowhead, 2); in addition, a small 

amount of a 48-kDa CTF degradation fragment and an unidentified P93 protein (asterisk) were 

present. Surprisingly, CTF contained relatively little incorporated 32P (compared to the P93 

contaminant, which was only visible by 32P autoradiography, but not by 125I autoradiography). 

Based on the relative abundance of the 32P-detected and immunostained CTF dimers (lanes 1 

and 4, respectively), we estimated the proportion of slow migrating CTF monomers (CTF-b,c,d) 

that were phosphorylated. Thus, in the absence of exogenous stimulation of LPHN1, no more 

than 16.1 ± 4.6% of its CTF exchanges its phosphate groups within 1 h. 

One unexpected observation from the above experiments was that the fast-migrating CTF-a 

band (or bands) in fact contained phosphate groups (on Tyr and Ser), but did not exchange 

them. This suggested that under the resting conditions, all or almost all LPHN1 CTF was 

phosphorylated and therefore this basal phosphorylation was unlikely to occur as a result of 

LPHN1 activation and subsequent desensitization. To support this hypothesis, we studied CTF 

phosphorylation in COS7 cells, which originate from kidney fibroblasts, do not demonstrate 

neuronal features and are unlikely to hyperactivate and desensitize LPHN1. These cells 

expressed LPHN1 well and partially cleaved it into NTF and CTF (Fig. 2H, lanes 3, 5). As these 

cells did not glycosylate the NTF very efficiently, both glycosylated and un-glycosylated NTF 

forms could be detected (open arrowheads). The cleaved CTF appeared as a single band of 

65 kDa (black arrowhead). In addition, the cells accumulated the uncleaved, full-size LPHN1 

(black arrow, LPHN1-FS), which is not normally delivered to the cell surface7,33. To test for CTF 

phosphorylation, we incubated COS7 cells expressing LPHN1 with [32P]orthophosphate, 

overnight (Fig. 2H, lanes 1, 2). As a result, both the cleaved CTF and even the LPHN1-FS 

became phosphorylated (Fig. 2H, lane 1). In addition, a few other phosphorylated proteins were 
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detected (asterisks, lane 1), but they also appeared in cells transfected with an empty vector 

(asterisks, lane 2) and thus represented endogenous phosphorylated proteins. Thus, LPHN1 

is spontaneously phosphorylated in both neuronal and non-neuronal cells, even before it is 

delivered to the cell surface, which supports the idea that at least its basal phosphorylation is 

not linked to its desensitization as a GPCR.  

CTF phosphorylation map 

To date, no experimental data about CTF phosphorylation in LPHN1 has been published. 

Therefore, we used several online resources to predict potential sites in the cytosolic loops and 

C-terminal tail of the CTF. From 30 to 50 potential phosphorylation sites were identified (Fig. 

3A) as substrates for a large number of protein kinases: Ca2+-calmodulin-dependent protein 

kinase II, caseine kinases 1 and 2, cyclin-dependent kinase 1 CDK1/CDK2, DNA-activated 

protein kinase, glycogen synthase kinase 3, insulin receptor – tyrosine kinase, p38 mitogen-

activated protein kinase, protein kinase A, protein kinase C, protein kinase G, proto-oncogene 

tyrosine-protein kinase Src, and ribosomal s6 kinase. While some of these kinases are unlikely 

to phosphorylate LPHN1 because they localize in different cellular compartments (e.g. cdc2 is 

a nuclear protein, whereas LPHN1 is located in synapses), notably, no sites for GPCR kinases 

(GRKs), which are likely to phosphorylate LPHN1, were identified by any resource. In general, 

sequence-based phosphorylation site prediction appeared relatively unreliable: up to 30% of 

the phosphorylation sites assigned by different prediction tools did not coincide with each other, 

and most algorithms predicted some phosphorylation even in the NTF and extracellular loops 

of the CTF, which, while not entirely impossible, is highly unusual for a GPCR.  
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High-throughput tandem mass spectrometry (MS2), being based on phosphopeptide 

enrichment and peptide size determination, provides a somewhat more likely phosphorylation 

site assignment36. This method identifies 34 possible phosphorylation sites in the CTF (Fig. 

3A). By only selecting those phosphorylation sites that have been predicted in more than 5 

references38–45, it is possible to limit the number of predicted phosphorylation sites to 7 most 

likely positions (Fig. 3B). The majority of these sites are located in the distal part of the C-

terminal cytoplasmic tail, far from the cytosolic surface of the 7TMRs and are likely to affect 

CTF interactions with other proteins. Given this uncertainty about the number and positions of 

phosphorylated residues in the CTF, which made CTF mutagenesis approach inefficient, we 

decided to continue with pharmacological analysis of CTF phosphorylation. 

α-LTX chromatography causes CTF dephosphorylation  

To begin to understand the physiological role of CTF phosphorylation and to identify the 

enzymes involved in its regulation, we first analyzed how LPHN1 is distributed among 

sequentially purified brain membrane fractions46: (a) total brain homogenate (TB), (b) P1 pellet 

obtained by TB centrifugation (nuclei and broken cell bodies); (c) S1 supernatant obtained by 

TB centrifugation (post-nuclear membranes devoid of nuclei and neuronal cell bodies, but 

containing severed nerve terminals, fragments of axons, dendrites, mitochondria, somal 

vesicles, and somal cytosol), (d) P2 pellet obtained by S1 centrifugation (same as S1, but 

devoid of somal vesicles and cytosol); (e) synaptosomes purified from P2 by density gradient 

centrifugation (highly enriched nerve terminals containing small amounts of attached 

postsynaptic membrane; free from axonal and dendritic fragments), and (f) synaptic plasma 

membranes (SPM) obtained from synaptosomes by osmotic lysis (same as synaptosomes, but 
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free from presynaptic cytosol and vesicles). These membrane fractions were equalized for the 

amount of protein, separated by SDS-PAGE, and immunoblotted for both NTF and CTF. As 

demonstrated in Fig. 4A, both the NTF and CTF were present in all membrane fractions, except 

P1 (nuclei and cell bodies), but were strongly concentrated in synaptosomes and especially in 

SPM. Fractions discarded in the process of SPM purification (cell bodies, dendrites, axons) 

contained essentially no LPHN1 (Fig. 4A, P1; and not shown). This means that mature LPHN1 

is a synaptic protein and should be a substrate for synaptic kinases and phosphatases. 

These experiments led to an unexpected observation that the relative amounts of CTF bands 

differed among the membrane fractions. Thus, S1 contained a small proportion of the basally 

phosphorylated CTF-a, but a large amount of the fully phosphorylated CTF-d, while 

synaptosomes were rich in CTF-a, but had little CTF-d (Fig. 4A, B). This relationship remained 

when another detergent was used to solubilize the membranes (Fig. 4A, CHAPS), and thus did 

not depend on the efficiency of protein solubilization. This was puzzling, because all LPHN1 

present in S1 came from the SPM compartment, so theoretically the staining in S1 should have 

been the same as in SPM. These results suggested that differential dephosphorylation of CTF 

occurred after sample solubilization and that it could be mediated by different phosphatases 

present in distinct membrane fractions. Indeed, when the membranes were solubilized in the 

presence of exogenous PPIs, the CTF bands appeared the same in all fractions (Fig. 4C). This 

result suggested that during the solubilization of synaptosomes and SPM, some CTF was 

dephosphorylated and converted to CTF-a, which did not happen upon S1 solubilization.  

These findings called for a careful analysis of how the membranes affect CTF phosphorylation. 

To study LPHN1 fragments, we purified them from different membrane fractions using an α-
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LTX affinity column2, as shown above (Figs. 1, 2). While α-LTX only binds NTF7, the CTF co-

purifies with it, because the two fragments strongly interact via the N-terminal peptide of the 

CTF (Stachel peptide)7,11. Both the NTF and CTF always co-purified from S1 (Fig. 4D). 

However, surprisingly, practically no CTF was isolated with the NTF from synaptosomes and 

SPM (Fig. 4D). On average, only 10% of CTF was co-purified with the NTF from synaptosomes 

and SPM compared to S1 (Fig. 4E). Furthermore, the CTF from synaptosomes and SPM was 

largely dephosphorylated (Fig. 4D, Syn, SPM). As the starting membranes (S1, synaptosomes 

and SPM) contained similar amounts of CTF, which was also similarly phosphorylated (Fig. 

4C), this dephosphorylation and loss of CTF could only be explained by the effect of α-LTX 

chromatography.  

To ascertain that CTF dephosphorylation occurred during affinity chromatography, we carried 

out LPHN1 isolation in the presence of exogenous PPIs. As expected, this prevented CTF 

dephosphorylation (Fig. 4F). Surprisingly, the presence of PPIs also prevented the loss of CTF 

from the column, and LPHN1 purified from Syn, SPM and S1 contained the same amount of 

CTF (Fig. 4F). We hypothesized that CTF dephosphorylation leads to its loss. To demonstrate 

this, we carried out LPHN1 isolation from solubilized S1 membranes treated with alkaline 

phosphatase. Under these conditions, almost no CTF was co-purified with the NTF from S1 

(Fig. 4G), similar to synaptosomes and SPM. This confirmed that the dephosphorylated CTF 

was lost during affinity chromatography. 

We then asked whether this effect was caused specifically by affinity chromatography on α-LTX 

or any other protein that can bind LPHN1. When affinity chromatography of solubilized 
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synaptosomes was carried out using WGA as an adsorbent, no dephosphorylation or loss of 

CTF was observed (Fig. 4H). 

This meant that α-LTX attached to the chromatography column either caused CTF 

dephosphorylation by itself or exposed CTF to another component that was also able to bind 

α-LTX. This idea was tested by varying the relative amounts of the α-LTX column and the 

solubilized membranes loaded onto it (termed here “differential load affinity chromatography”). 

The rational was that if a α-LTX-column was overloaded with LPHN1, then it would not have 

the capacity to bind any other proteins that interact with toxin weaker than LPHN1. Reciprocally, 

if a large excess of α-LTX-column was used, it would provide sufficient binding sites not only 

for LPHN1, but also for any protein/s that could mediate CTF dephosphorylation. However, if 

α-LTX itself was responsible for CTF dephosphorylation, by direct contact with LPHN1, then 

under both conditions all CTF would be equally dephosphorylated (and lost). When such 

experiments were conducted, the results (quantified in Fig. 4I, examples shown in Fig. 5A) 

demonstrated that using a large LTX column (“>LTX”) led to much deeper CTF 

dephosphorylation than overloading a LTX column with LPHN1 (“>LPH”). This directly 

suggested that during affinity chromatography the excess of α-LTX on a large column provided 

binding sites for some phosphatase/s, which thus came into contact with the CTF and caused 

its dephosphorylation. In fact, at least one phosphatase, RPTPσ, is known to interact with 

LTX47. A direct experiment demonstrated that RPTPσ was indeed co-purified with LPHN1 on 

large LTX columns, but not on small LTX columns overloaded with LPHN1 (Fig. 4J).  

Thus, considered together, our results indicated that the CTF of LPHN1 was dephosphorylated 

during the incubation with α-LTX and that this reaction was mediated by brain phosphatases 
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(in particular RPTPσ) recruited to LPNH1 by α-LTX, but not by WGA. The differential 

dephosphorylation of the CTF by various fractions of brain membranes suggested that they 

might contain distinct sets of endogenous phosphatases and endogenous PPIs, which would 

differentially affect the CTF during chromatography (see also Discussion).  

Dephosphorylated CTF has a low affinity for the NTF 

The results described above could explain CTF dephosphorylation during α-LTX affinity 

chromatography, but not its loss from column eluates. Several processes could lead to the 

disappearance of dephosphorylated CTF: (1) the loss of phosphate groups could destabilize 

the CTF and facilitate its proteolytic degradation; (2) it could irreversibly aggregate; or (3) it 

could be eluted from the column in earlier fractions.  

As demonstrated above (Figs. 2D, E), dephosphorylation did not increase CTF degradation, 

but did cause some CTF aggregation. Although we could not exclude aggregation as one of 

the reasons behind the apparent loss of CTF, the aggregation never involved as much 

monomeric CTF as was lost in experiments with synaptosomes and SPM (compare Figs. 2B, 

D with Figs. 4D, G); in addition, treating α-LTX columns with SDS did not elute any aggregated 

CTF. Therefore, we carefully tested all fractions obtained during α-LTX-chromatography of 

solubilized synaptosomes, using the differential load affinity chromatography approach, as 

described in the previous section (Figs. 4I, J). When the amount of LTX on the column 

exceeded the amount of loaded LPHN1, we observed substantial dephosphorylation of CTF 

after overnight incubation (Fig. 5A, >LTX). Importantly, a large amount of CTF-a produced by 

dephosphorylation in this experiment appeared in the wash, where NTF was absent (Fig. 5A, 

>LTX). In contrast, when the loaded LPHN1 exceeded LTX on the column, no CTF 
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dephosphorylation, nor loss, occurred (Fig. 5A, >LPH). Quantification of these data (Fig. 5B), 

demonstrated a large and statistically highly significant loss of CTF from the final eluate under 

the LTX excess condition, compared to the LPH excess condition (Fig. 5B, Eluate). On the 

other hand, when the amount of CTF present in all fractions (including 0.5 M NaCl washes) was 

combined, no significant difference between the two conditions was observed (Fig. 5B, All 

fractions). These results showed that when the CTF was dephosphorylated on an α-LTX 

column, a large proportion of it dissociated from the NTF, while the latter remained bound to α-

LTX.  

The release of dephosphorylated CTF could be caused by (1) a weaker interaction between 

the NTF and dephosphorylated CTF or (2) a conformational change induced by α-LTX in the 

NTF that repelled the CTF. In addition, a direct role of α-LTX in CTF dephosphorylation was 

not entirely excluded by our differential load experiments above (Figs. 4I, J; 5A). One way to 

test all these possibilities was to separate purified LPHN1 on a different affinity column, for 

example WGA. This lectin binds the NTF of LPHN1, but does not cause receptor activation or 

separation of its fragments9, like α-LTX does. On the other hand, WGA does not interact with 

the CTF, which is not glycosylated (Fig. 2A). For this experiment (schematically shown in Fig. 

5C), we used LPHN1 purified on an α-LTX-column, which had been overloaded with S1 in the 

presence of exogenous PPIs to avoid any possible CTF dephosphorylation. This sample was 

then separated under three different conditions (Fig. 5C): (1) WGA-affinity chromatography of 

LPHN1 without any further treatment; (2) WGA-chromatography of LPHN1 treated with alkaline 

phosphatase to mimic CTF dephosphorylation on a column; and (3) second α-LTX affinity 

chromatography of untreated LPHN1. Using the eluate from a LTX column (Fig. 5C, D) had an 

additional advantage that it was devoid of any cellular protein phosphatases. In experiment 1, 
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both the NTF and all phosphorylated forms of CTF co-purified in the SDS eluate (Fig. 5E, 

Eluate). No CTF dephosphorylation occurred on this column and no CTF was present in wash 

fractions (Fig. 5E, Wash). When the receptor had been treated with alkaline phosphatase 

(experiment 2), both the NTF and CTF-a were seen binding to WGA-column, but about 90% of 

the CTF was then gradually released from the column by successive 0.5 M NaCl washes (Fig. 

5F, Wash). Only about 10% of the original CTF-a remained attached to the NTF and was eluted 

by SDS (Fig. 5F, Eluate). In experiment 3, the purified LPHN1 did not become 

dephosphorylated on a second α-LTX-column and was isolated without losses (Fig. 5G).  

These data indicated that CTF dephosphorylation during its purification from synaptic 

membranes (e.g. Fig. 4D, G, J) was mediated by cellular protein phosphatases rather than by 

a ligand (α-LTX or WGA) attaching to the NTF. Also, dephosphorylation of CTF apparently 

made the NTF-CTF complex less stable, leading to CTF release from the NTF by high salt 

washes. Finally, given the result in Fig. 5G, α-LTX binding to the NTF did not itself induce the 

release of phosphorylated CTF.  

However, the problem with these data was that they were based on NTF binding to a column. 

Although the column material seemed to have no direct effect on CTF dephosphorylation or 

loss, it was still possible that the specific configuration of the NTF-CTF complex attached to a 

column could artificially affect its stability. To test this hypothesis, we used an opposite 

approach and assessed NTF-CTF complex stability by attaching it to an adsorbent via the CTF. 

For this purpose, we used anti-CTF antibodies bound to a protein A column to pull down the 

CTF. The CTF was either intact or treated with alkaline phosphatase. We then measured co-

precipitation of the NTF with the CTF (Fig. 5H). The results of this experiment are shown in 
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Figs. 5I, J, where it can be seen that dephosphorylated CTF pulled down much less NTF than 

the fully phosphorylated control CTF. Thus, the stability of the NTF-CTF complex depends on 

the state of CTF phosphorylation and not on the manner in which it is pulled down.  

CTF dephosphorylation in tissues and cells  

These in vitro studies led to an important question whether ligand binding to the NTF could also 

affect CTF dephosphorylation in cells/tissues. We, therefore, compared αLTX-induced CTF 

phosphorylation and dephosphorylation in synaptosomes and neuroblastoma NB2a cells stably 

expressing LPHN1. The treatment of synaptosomes with 5 nM α-LTX for 1 h led to deep 

dephosphorylation of CTF (Fig. 6A). When LPHN1 was expressed in NB2a cells, its CTF 

migrated on SDS-gel as a series of bands resembling the basally phosphorylated CTF-a band 

and some highly phosphorylated CTF-b,c,d bands (Fig. 6B, bracket). To prove that this 

migration pattern reflected CTF phosphorylation, LPHN1 was isolated from NB2a cells using α-

LTX chromatography and treated with alkaline phosphatase. As demonstrated in Fig. 6B, left, 

dephosphorylation clearly removed the slower migrating CTF bands and also caused some 

CTF dimer formation. When these NB2a cells were treated with 5 nM α-LTX for 1 h, the amount 

of CTF-d slightly decreased, while CTF-a increased, and a small amount of dimer formation 

was detected. However, the treatment of the cells with a high α-LTX concentration (30 nM) led 

to strong dephosphorylation of the CTF and formation of a significant amount of SDS-resistant 

complexes (CTF dimers and trimers) (Fig. 6B, arrowheads 2, 3).  

These results indicated that α-LTX binding to the NTF could induce CTF dephosphorylation 

and dimerization by acting across the plasma membrane of living cells. Thus, the toxin could 

only cause CTF dephosphorylation if it recruited a phosphatase to the α-LTX-LPHN1 complex. 
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As was shown above (Fig. 4J), RPTPσ, which binds α-LTX, is one of the phosphatases that 

could participate in this reaction. We therefore analyzed the level of RPTPσ mRNA in the NB2a 

cells expressing LPHN1 (Fig. 6C). The amount of RPTPσ transcript was normalized to the 

mRNA level of β-actin, a housekeeping protein frequently used as a reference, and compared 

to the expression of two important proteins, stromal interacting molecules (STIM1 and 2), that 

are expressed in essentially all cells and participate in Ca2+ homeostasis. The level of RPTPσ 

mRNA exceeded that for STIM1 and 2 by a factor of 2 (Fig. 6D), suggesting that this 

phosphatase was actively produced by the neuroblastoma cells and could indeed mediate the 

effect of α-LTX on CTF dephosphorylation.  

To test whether the basally phosphorylated CTF-a had a low affinity for the NTF not only in 

vitro, but also in vivo, and to avoid any direct effect of α-LTX on the NTF, we separated 

solubilized brain membranes (S1) by sucrose density gradient centrifugation. This method also 

allowed an estimation of the molecular size and stoichiometry of the NTF-CTF complexes (Fig. 

6E, F). To calibrate the gradients and compare receptor preparations after different treatments, 

we also centrifuged several marker proteins (Fig. 6D) and SDS-denatured receptor (Fig. 6E, F, 

bottom panels).  

We found that in untreated membrane samples, the distribution of the NTF paralleled that of 

the phosphorylated CTF-b,c,d bands, demonstrating mostly stoichiometric dimeric complexes 

(LPH*2) (370 kDa) and also some tetramers (LPH*4) (740 kDa), but almost no monomers (185 

kDa) (Fig. 6E, F, top panels). This suggested that the phosphorylated forms of the CTF 

interacted with the NTF. However, most significantly, the basally phosphorylated CTF-a form 

trailed behind the NTF/CTF complexes (Fig. 6E; top panel, arrow). The position of the CTF-a 
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on the gradient indicated that it was dimeric, but there was no NTF in these fractions (Fig. 6F, 

insets).  

When the native NTF-CTF complexes were centrifuged in the presence of an excess of α-LTX 

(Fig. 6E, F, middle panel, grey line), the NTF and CTF shifted to a denser region of the gradient, 

with molecular masses of 630 kDa and above, corresponding to a complex of LPHN1 dimers 

with LTX dimers (LPH*2-LTX*2) (Fig. 6E, F). Importantly, some amount of dephosphorylated 

CTF-a trailed in the lighter gradient fractions, suggesting that, due to a lack of NTF, it did not 

participate in α-LTX-induced NTF-CTF complex. These data indicate that LPHN1 is dimeric in 

neuronal membranes and contains almost only the phosphorylated CTF-b,c,d bands. The 

basally phosphorylated/dephosphorylated CTF-a appears to form dimeric complexes that lack 

NTF.  

Discussion 

Based on technical improvements in electrophoretic separation of spontaneously aggregating 

CTF (Fig. 1) and on the use of alkaline phosphatase with or without PPIs (Fig. 2), we show 

here, for the first time, that the CTF of LPHN1 is post-translationally modified by both reversible 

phosphorylation and possibly palmitoylation (Fig. 2). Possible phosphorylation of LPHN1 has 

been previously mentioned in several reviews48–50, including a very comprehensive literature 

analysis51, but, to our knowledge, never experimentally addressed (except using MS2-based 

predictions, see below). However, phosphorylation of GPCRs is very important for their 

functions26,51 and, therefore, deserves an in-depth investigation. Many of the findings made in 

this paper will be directly applicable to other Adhesion GPCRs.  
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Theoretical predictions suggest that CTF of LPHN1 can be phosphorylated on ~ 50 sites that 

can serve as substrates for various kinases. Based on high-throughput MS2, 34 peptides have 

been identified as potentially phosphorylated and tentatively assigned to LPHN136 (Fig. 3A), 

with 5 potential sites in the cytosolic loops 2 and 3, and a large number in the C-terminal tail. 

Of the 34 potentially phosphorylated peptides, 7 sequences have been identified between 5 

and 86 times, suggesting that they are likely to be present in the CTF of LPHN1. However, it 

must be stressed that the MS2 assignment is still probabilistic, and none of these 34 peptides 

has been confirmed by sequence analysis. Four of the 7 most frequently hit peptides are not 

recognized as likely phosphorylation sites by any consensus sequence prediction algorithms, 

and the MS2 method regularly predicts multiple phosphorylation sites in the extracellular 

domains of LPHN1. Our experimental data agree with a relatively low number of 

phosphorylation sites, which involve Tyr, Ser, and Thr and appears as 4 protein bands that 

have different mobilities on the SDS-gels (Fig. 1A; 2F). This suggests that 7-10 phosphate 

groups can be attached to the slow-migrating CTF-d. This multi-site phosphorylation resembles 

the “barcode” type of phosphorylation by GRKs observed in many GPCRs26,52. Given the large 

number of potential phosphorylation sites in LPHN1, experimental analysis of its CTF 

phosphorylation is now required.  

What could be the functional role of this phosphorylation? The most interesting feature of CTF 

phosphorylation is that it leads to a change in CTF affinity for the NTF (Fig. 4-6): the 

phosphorylated CTF binds the NTF much stronger than the basally phosphorylated or 

dephosphorylated CTF. CTF phosphorylation in the brain, where LPHN1 expression by far 

exceeds its expression in any other tissues, apparently occurs prior to its normal function in 

synapses. Indeed, CTF is phosphorylated when LPHN1 is transiently expressed in COS and 
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NB2a cells (Figs. 2H, 6B), even before the protein is cleaved and delivered to the cell surface 

(Fig. 2H).  

In a vast number of receptors, ligand-induced phosphorylation, especially by GRKs, is 

associated with a decrease in ligand affinity, increased receptor desensitization and 

internalization27,53–56. However, LPHN1 (as an Adhesion GPCR) is unusual because it consists 

of two fragments, of which the NTF is engaged in strong cell-surface interactions with other 

proteins across the synaptic cleft12,57. Unless the NTF is proteolytically cleaved, its 

internalization is not possible. As phosphorylated CTF binds strongly to the NTF, it would also 

be unable to internalize. In addition, the CTF and the whole LPHN1 are unlikely to undergo the 

lysosomal pathway of internalization, because this would lead to their retrograde transport to 

neuronal somata58,59, and LPHN1 fragments are not observed in the P1 (Fig. 4A) or cytosolic 

vesicular fractions (not shown). Therefore, CTF desensitization and recovery probably occur 

while it remains in the plasma membrane, without internalization. On the other hand, the 

recycling of phosphate groups in highly phosphorylated CTF species is slow, constituting no 

more than 16% per hour. (Fig. 2). Finally, given that up to 100% of LPHN1 in nerve terminals 

is variously phosphorylated, the phosphorylated CTF must be an active form of LPHN1 rather 

than desensitized and destined for recycling, as in the case of GRK-phosphorylated GPCRs.  

On the other hand, similar to some other GPCRs60, differently phosphorylated LPHN1 forms 

can have distinct activities. In fact, the binding of LTXN4C, to the NTF causes NTF-CTF 

association and massive activation of the CTF7. The effect of LTXN4C can continue for hours in 

a burst-like manner, without showing any signs of desensitization61. However, activation by α-

LTX also leads to CTF dephosphorylation by cellular protein phosphatases (Figs. 4D, E, G, J; 
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5A; 6A, B), including RPTPσ, in a process that is schematically presented in Fig. 7. As a result, 

CTF affinity for the NTF decreases and it can dissociate from the complex (Fig. 5A, F, I; 6E). 

This obviously should stop the signaling induced by α-LTX, which only interacts with the NTF. 

However, it is tempting to speculate that this separation leads to a change in signaling specificity 

of LPHN1. Indeed, when LTXN4C acts via the NTF-CTF complex, it clearly stimulates Gαq-

mediated signaling via PLC to internal Ca2+ stores20,62. On the other hand, the CTF of LPHN1 

expressed without the NTF demonstrates a different signaling specificity and (at least when it 

is stimulated by exogenous Stachel peptide) activates Gαi, leading to a decrease in cAMP 

levels63. Thus, the activation of one signaling pathway may cause the CTF to dissociate from 

the complex and switch to another signaling pathway, where the CTF could act as a non-

Adhesion GPCR. In this process, the NTF would play the role of a molecular switch. CTF 

phosphorylation might also regulate its interaction with intracellular partners. Therefore, it is 

important to use phosphorylated forms of CTF when modeling its interaction with other proteins. 

Based on our data, LPHN1 appears to be always phosphorylated in synaptic membranes and 

in transfected cells (Figs. 1A, 2A, H; 6B) and remains largely phosphorylated even after long 

incubation in detergent extracts (Fig. 4A). However, both nerve terminals and NB2a cells 

contain RPTPσ and other phosphatases, which could theoretically dephosphorylate LPHN1, 

especially in detergent lysates. The stability of CTF phosphorylation could be explained by an 

equilibrium between the activities of phosphatases and kinases. However, CTF exchanges 

phosphate groups rather slowly (Fig. 2G); in addition, dephosphorylation does not prevail even 

after overnight incubations in detergent lysate (e.g. Fig. 4H), when ATP required for 

phosphorylation should be gradually lost. Thus, constant phosphorylation and 

dephosphorylation of LPHN1 is unlikely. It is thus possible that synaptic phosphatases that 
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target LPHN1 are normally inhibited and only slightly dephosphorylate the CTF (Fig. 4A). 

Alternatively, LPHN1 may normally exist in a conformation that does not allow its 

dephosphorylation. In fact, when α-LTX is added to solubilized membranes (in Sepharose-

immobilized form, Fig. 4D, G, J) or to synaptosomes and cells (in its soluble form, Fig. 6A, B), 

this leads to deep CTF dephosphorylation, possibly because α-LTX activates both LPHN1 and 

phosphatases, especially RPTPσ, which also binds α-LTX47 (Fig. 4J). Given that WGA, which 

also binds LPHN1, does not cause LPHN1 dephosphorylation after overnight incubation (Fig. 

4H), it is probable that LPHN1 dephosphorylation requires the activation of both LPHN1 and 

possibly phosphatase/s by an agonist (e.g. α-LTX).  

The purified neuronal compartments that normally contain LPHN1 (synaptosomes and SPM) 

have active phosphatases that dephosphorylate LPHN1 either spontaneously (albeit weakly) 

(Fig. 2A) or after activation by α-LTX (Figs. 4, 5A). One peculiar observation made here is that 

when these neuronal compartments are “contaminated” with components of neuronal cell 

bodies (TB or S1 fractions), which themselves lack LPHN1 (Fig. 4A), this leads to a strong 

inhibition of CTF dephosphorylation, whether spontaneous or α-LTX-mediated (Fig. 4A, D). 

This suggests that endogenous PPIs (probably regulatory subunits of protein phosphatases) 

are more abundant in the TB or S1 fractions than any protein phosphatases in nerve terminals. 

These “contaminating” PPIs, present in the somal cytosol or fragments of the endoplasmic 

reticulum, could ectopically inhibit CTF dephosphorylation by synaptic phosphatases when they 

areactivated by solubilization or by α-LTX. On the other hand, PPIs present in synapses are 

unable to protect CTF from α-LTX-induced dephosphorylation, probably because α-LTX brings 

the CTF and RPTPσ (and other phosphatases) into close apposition. An interaction of α-LTX 

with its two receptors (RPTPσ and LPHN1) could be the mechanism by which α-LTX 
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dephosphorylates the CTF and so efficiently signals via LPHN1 (Fig. 7). However, given that 

CTF is phosphorylated not only on Tyr, but also Ser and Thr, it is clear that RPTPσ is not the 

only phosphatase targeting LPHN1. 

Finally, as dephosphorylation weakens the CTF-NTF interaction (Figs. 4, 5), it is important to 

consider this hypothesis in light of the ability of LPHN1 fragments to dissociate and re-associate 

reversibly, as described previously7,8 and later independently confirmed using another 

Adhesion GPCR64. This dissociation and especially association have been a contentious issue, 

especially considering the 3D structure of the LPHN1 GAIN domain11, which demonstrates that 

the Stachel peptide is essentially buried in the C-terminal part of the NTF, making it hard to 

imagine how the two could separate, let alone reassemble afterwards. However, the 

dissociation-association was observed only on the cell surface and not when the NTF and CTF 

were expressed as soluble proteins7,8,64. It is possible that the anchoring mechanism, which 

holds the NTF on the membrane, also helps to maintain an open cavity within the GAIN domain, 

which allows the CTF docking/undocking. Alternatively, it is possible that the reassociation does 

not fully restore the tight grasp of the Stachel peptide by the GAIN domain11. The two LPHN1 

fragments might interact in many different ways, but it is clear that α-LTX binding to the NTF 

leads to its reassembly with the CTF on the cell membrane, allowing LPHN1 to mediate an 

intracellular signal7,8,64, and CTF dephosphorylation could be involved in generating this signal. 

In conclusion, we propose that the strength of NTF-CTF interaction is based on the 

phosphorylation state of the CTF and this may affect the physiological functions of LPHN1. 

Previously, we described the dynamic nature of NTF-CTF interaction7,8. This paper reveals the 

first details of how this interaction may be regulated in cells. Other Adhesion GPCRs may be 
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subject to similar modulation, and it will be important to study these processes in other members 

of this family.  

Acknowledgments 

Supported by a Wellcome Trust Project Grant WT083199MF, a Biotechnology and Biological 

Science Research Council Core Support Grant BBF0083091, and core funding from the 

University of Kent School of Pharmacy (to Y.A.U). 

Competing interests 

JPS is employed by UCB-Pharma. JS is employed by Thomsons Online Benefits. All other 

authors declare no competing interests. 

YAU conceived and coordinated the study, analyzed the results and wrote the article. MAR, 

CM, OB, JS, JKB, and JPS designed, performed and analyzed the experiments. MAR and OB 

contributed to the manuscript. All authors were involved in revising the article and approved the 

final version of the manuscript. 

References 

1. Hamann J., G. Aust, D. Arac, et al. 2015. International Union of Basic and Clinical 
Pharmacology. XCIV. Adhesion G Protein-Coupled Receptors. Pharmacol. Rev. 67: 
338–367. 

2. Davletov B.A., O.G. Shamotienko, V.G. Lelianova, et al. 1996. Isolation and 
biochemical characterization of a Ca2+-independent α-latrotoxin-binding protein. J. Biol. 
Chem. 271: 23239–23245. 

3. Krasnoperov V.G., R. Beavis, O.G. Chepurny, et al. 1996. The calcium-independent 
receptor of α-latrotoxin is not a neurexin. Biochem. Biophys. Res. Commun. 227: 868–



38 

875. 

4. Krasnoperov V.G., M.A. Bittner, R. Beavis, et al. 1997. α-Latrotoxin stimulates 
exocytosis by the interaction with a neuronal G-protein-coupled receptor. Neuron 18: 
925–937. 

5. Lelianova V.G., B.A. Davletov, A. Sterling, et al. 1997. α-Latrotoxin receptor, latrophilin, 
is a novel member of the secretin family of G protein-coupled receptors. J. Biol. Chem. 
272: 21504–21508. 

6. Lin H.H., G.W. Chang, J.Q. Davies, et al. 2004. Autocatalytic cleavage of the EMR2 
receptor occurs at a conserved G protein-coupled receptor proteolytic site motif. J. Biol. 
Chem. 279: 31823–31832. 

7. Volynski K.E., J.-P.P. Silva, V.G. Lelianova, et al. 2004. Latrophilin fragments behave 
as independent proteins that associate and signal on binding of LTXN4C. EMBO J. 23: 
4423–4433. 

8. Silva J.-P., V. Lelianova, C. Hopkins, et al. 2009. Functional cross-interaction of the 
fragments produced by the cleavage of distinct adhesion G-protein-coupled receptors. 
J. Biol. Chem. 284: 6495–6506. 

9. Rahman M.A., A.C. Ashton, F.A. Meunier, et al. 1999. Norepinephrine exocytosis 
stimulated by α-latrotoxin requires both external and stored Ca2+ and is mediated by 
latrophilin, G proteins and phospholipase C. Philos. Trans. R. Soc. B Biol. Sci. 354: 
379–386. 

10. Krasnoperov V., Y. Lu, L. Buryanovsky, et al. 2002. Post-translational proteolytic 
processing of the calcium-independent receptor of α-latrotoxin (CIRL), a natural 
chimera of the cell adhesion protein and the G protein-coupled receptor: Role of the G 
protein-coupled receptor proteolysis site (GPS) motif. J. Biol. Chem. 277: 46518–
46526. 

11. Arac D., A.A. Boucard, M.F. Bolliger, et al. 2012. A novel evolutionarily conserved 
domain of cell-adhesion GPCRs mediates autoproteolysis. 31: 1364–1378. 

12. Silva J.-P., V.G. Lelianova, Y.S. Ermolyuk, et al. 2011. Latrophilin 1 and its endogenous 
ligand Lasso/teneurin-2 form a high-affinity transsynaptic receptor pair with signaling 
capabilities. Proc. Natl. Acad. Sci. U. S. A. 108: 12113–12118. 

13. O’Sullivan M.L., J. de Wit, J.N. Savas, et al. 2012. FLRT Proteins Are Endogenous 
Latrophilin Ligands and Regulate Excitatory Synapse Development. Neuron 73: 903–
910. 

14. Zuko A., A. Oguro-ando, H. Post, et al. 2016. Association of cell adhesion molecules 
contactin-6 and latrophilin-1 regulates neuronal apoptosis. 9: Article 143 1-16. 



39 

15. Vysokov N. V, J.-P.P. Silva, V.G. Lelianova, et al. 2016. The mechanism of regulated 
release of Lasso/teneurin-2. Front. Mol. Neurosci. 9: 59. 

16. Vysokov N. V, J.-P. Silva, V.G. Lelianova, et al. 2018. Proteolytically released 
Lasso/teneurin-2 induces axonal attraction by interacting with latrophilin-1 on axonal 
growth cones. Elife 7: pii: e3793. 

17. Ushkaryov Y.A., A. Rohou & S. Sugita. 2008. α-Latrotoxin and its receptors. In 
Pharmacology of Neurotransmitter Release Sudhof T.C. & Starke K., Eds. 171–206. 
Berlin, Heidelberg: Springer-Verlag. 

18. Orlova E. V, M.A. Rahman, B. Gowen, et al. 2000. Structure of α-latrotoxin oligomers 
reveals that divalent cation-dependent tetramers form membrane pores. Nat. Struct. 
Biol. 7: 48–53. 

19. Ichtchenko K., M. Khvotchev, N. Kiyatkin, et al. 1998. α-Latrotoxin action probed with 
recombinant toxin: Receptors recruit α-latrotoxin but do not transduce an exocytotic 
signal. EMBO J. 17: 6188–6199. 

20. Capogna M., K.E. Volynski, N.J. Emptage, et al. 2003. The alpha-latrotoxin mutant 
LTXN4C enhances spontaneous and evoked transmitter release in CA3 pyramidal 
neurons. J. Neurosci. 23: 4044–53. 

21. Volynski K.E., M. Capogna, A.C. Ashton, et al. 2003. Mutant α-latrotoxin (LTXN4C) 
does not form pores and causes secretion by receptor stimulation. This action does not 
require neurexins. J. Biol. Chem. 278: 31058–31066. 

22. Ashton A.C., K.E. Volynski, V.G. Lelianova, et al. 2001. α-Latrotoxin, Acting via Two 
Ca2+-dependent Pathways, Triggers Exocytosis of Two Pools of Synaptic Vesicles. J. 
Biol. Chem. 276: 44695–44703. 

23. Liu J., Q. Wan, X. Lin, et al. 2005. α-Latrotoxin modulates the secretory machinery via 
receptor-mediated activation of protein kinase C. Traffic 6: 756–765. 

24. Lajus S., P. Vacher, D. Huber, et al. 2006. α-Latrotoxin induces exocytosis by inhibition 
of voltage-dependent K+ channels and by stimulation of L-type Ca2+channels via 
latrophilin in β-cells. J. Biol. Chem. 281: 5522–5531. 

25. Lelyanova V.G., D. Thomson, R.R. Ribchester, et al. 2009. Activation of α-latrotoxin 
receptors in neuromuscular synapses leads to a prolonged splash acetylcholine 
release. Bull. Exp. Biol. Med. 147: 701–703. 

26. Butcher A.J., K.C. Kong, R. Prihandoko, et al. 2012. Physiological role of G-protein 
coupled receptor phosphorylation. In Muscarinic Receptors Fryer A.D., Christopoulos 
A., & Nathanson N.M., Eds. 79–94. London: Springer. 



40 

27. Gainetdinov R.R., R.T. Premont, L.M. Bohn, et al. 2004. Desensitization of G protein-
coupled receptors and neuronal functions. Annu. Rev. Neurosci. 27: 107–144. 

28. Gurevich V. V & E. V Gurevich. 2019. GPCR signaling regulation : the role of GRKs and 
arrestins. Front. Pharmacol. 10: 1–11. 

29. Hilbig D., D. Sittig, F. Hoffmann, et al. 2018. Mechano-dependent phosphorylation of 
the PDZ-binding motif of CD97/ADGRE5 modulates cellular detachment. 24: 1986–
1995. 

30. Davydov I.I.I., S. Fidalgo, S.A.A. Khaustova, et al. 2009. Prediction of epitopes in 
closely related proteins using a new algorithm. Bull. Exp. Biol. Med. 148: 869–873. 

31. Volynski K.E., F.A. Meunier, V.G. Lelianova, et al. 2000. Latrophilin, neurexin, and their 
signaling-deficient mutants facilitate α-latrotoxin insertion into membranes but are not 
involved in pore formation. J. Biol. Chem. 275: 41175–41183. 

32. Gordon-Weeks P.R. 1997. Isolation of synaptosomes, growth cones and their 
subcellular components. In Neurochemistry. A Practical Approach Turner A.J. & 
Bachelard H.S., Eds. 1–26. Oxford, UK: IRL Press. 

33. Ashton A.C., M.A. Rahman, K.E. Volynski, et al. 2000. Tetramerisation of α-latrotoxin by 
divalent cations is responsible for toxin-induced non-vesicular release and contributes 
to the Ca2+-dependent vesicular exocytosis from synaptosomes. Biochimie 82: 453–
468. 

34. Petrenko A.G., V.D. Lazaryeva, M. Geppert, et al. 1993. Polypeptide composition of the 
α-latrotoxin receptor. High affinity binding protein consists of a family of related high 
molecular weight polypeptides complexed to a low molecular weight protein. J. Biol. 
Chem. 268: 1860–7. 

35. Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of 
bacteriophage T4. Nature 227: 680–685. 

36. Hornbeck P. V, J.M. Kornhauser, V. Latham, et al. 2019. 15 years of 
PhosphoSitePlus®: integrating post-translationally modified sites , disease variants and 
isoforms. Nucleic Acids Res. 47: 433–441. 

37. Ruijter J.M., C. Ramakers, W.M.H. Hoogaars, et al. 2009. Amplification efficiency: 
linking baseline and bias in the analysis of quantitative PCR data. 37: e45 1-12. 

38. Lundby A., A. Secher, K. Lage, et al. 2012. Quantitative maps of protein 
phosphorylation sites across 14 different rat organs and tissues. Nat. Commun. 3: 810–
876. 

39. Sacco F., S.J. Humphrey, M. Mischnik, et al. 2016. Glucose-regulated and drug-



41 

perturbed phosphoproteome reveals molecular mechanisms controlling insulin 
secretion. Nat. Commun. 7: 13250. 

40. Kettenbach A.N., D.K. Schweppe, B.K. Faherty, et al. 2013. Quantitative 
phosphoproteomics identifies substrates and functional modules of aurora and polo-like 
kinase activities in mitotic cells. 4: rs5. 

41. Palacios-Moreno J., L. Foltz, A. Guo, et al. 2015. Neuroblastoma tyrosine kinase 
signaling networks involve FYN and LYN in endosomes and lipid rafts. 11: e1004130 1-
33. 

42. Ding V.M.Y., P.J. Boersema, L.Y. Foong, et al. 2011. Tyrosine phosphorylation profiling 
in FGF-2 stimulated human embryonic stem cells. 6: e17538. 

43. Moritz A., Y. Li, A. Guo, et al. 2011. Akt-RSK-S6 kinase signaling networks activated by 
oncogenic receptor tyrosine kinases. 3: ra64. 

44. Jørgensen C., A. Sherman, G.I. Chen, et al. 2014. Cell-specific information processing 
in segregating populations of Eph receptor ephrin-expressing cells. 326: 1502–1509. 

45. Brill L.M., A.R. Salomon, S.B. Ficarro, et al. 2004. Robust phosphoproteomic profiling of 
tyrosine phosphorylation sites from human T cells using immobilized metal affinity 
chromatography and tandem mass spectrometry. 76: 2883–2892. 

46. Berninghausen O., M.A. Rahman, J.-P.P. Silva, et al. 2007. Neurexin Iβ and neuroligin 
are localized on opposite membranes in mature central synapses. J. Neurochem. 103: 
1855–1863. 

47. Krasnoperov V., M.A. Bittner, W. Mo, et al. 2002. Protein-tyrosine phosphatase-σ is a 
novel member of the functional family of α-latrotoxin receptors. 277: 35887–35895. 

48. Silva J.-P., J. Suckling & Y. Ushkaryov. 2009. Penelope’s web: Using α-latrotoxin to 
untangle the mysteries of exocytosis. J. Neurochem. 111: 275–290. 

49. Meza-Aguilar D.G. & A.A. Boucard. 2014. Latrophilins updated. BioMol Concepts 5: 
457–478. 

50. Silva J.-P. & Y. Ushkaryov. 2010. The latrophilins, “split-personality” receptors. In 
Adhesion-GPCRs: Structure to Function Yona S. & Stacey M., Eds. 59–75. Austin: 
Landes Boscience & Springer Science + Business Media. 

51. Langenhan T., G. Aust & J. Hamann. 2013. Sticky signaling — Adhesion Class G 
Protein-coupled Receptors take the stage. 6: re3 1-22. 

52. Yang Z., F. Yang, D. Zhang, et al. 2017. Phosphorylation of G protein-coupled 
receptors: from the barcode hypothesis to the flute model. Mol. Pharmacol. 92: 201–



42 

210. 

53. Carman V. & J.L. Benovic. 1998. G-protein-coupled receptors: turn-ons and turn-offs. 
Curr. Opin. Neurobiol. 8: 335–344. 

54. Holtmann M.H., B.F. Roettger, D.I. Pinon, et al. 1996. Role of receptor phosphorylation 
in desensitization and internalization of the secretin receptor. J. Biol. Chem. 271: 
23566–23571. 

55. Pitcher J.A., N.J. Freedman & R.J. Lefkowitz. 1998. G protein – coupled receptor 
kinases. Annu. Rev. Biochem. 67: 633–692. 

56. Marchese A., M.M. Paing, B.R.S. Temple, et al. 2008. G protein-coupled receptor 
sorting to endosomes and lysosomes. Annu. Rev. Pharmacol. Toxicol. 48: 601–629. 

57. Boucard A.A., S. Maxeiner & T.C. Südhof. 2014. Latrophilins function as heterophilic 
cell-adhesion molecules by binding to teneurins: Regulation by alternative splicing. J. 
Biol. Chem. 289: 387–402. 

58. Ferguson S.S.G. & M.G. Caron. 1998. G protein-coupled receptor adaptation 
mechanisms. Cell Devel. Biol. 9: 119–127. 

59. Vukoja A., U. Rey, A.G. Petzoldt, et al. 2018. Presynaptic biogenesis requires axonal 
transport of lysosome-related vesicles. Neuron 99: 1216-1232.e7. 

60. Daaka Y., L.M. Luttrell & R.J. Lefkowitz. 1997. Switching of the coupling of the β2-
adrenergic receptor to different G proteins by protein kinase A. Nature 390: 88–91. 

61. Lelyanova V.G., D. Thomson, R.R. Ribchester, et al. 2009. Activation of α-latrotoxin 
receptors in neuromuscular synapses leads to a prolonged splash acetylcholine 
release. Bull. Exp. Biol. Med. 147: 701–3. 

62. Davletov B.A., F.A. Meunier, A.C. Ashton, et al. 1998. Vesicle exocytosis stimulated by 
α-latrotoxin is mediated by latrophilin and requires both external and stored Ca2+. 
EMBO J. 17: 3909–3920. 

63. Nazarko O., A. Kibrom, J. Winkler, et al. 2018. A comprehensive mutagenesis screen of 
the Adhesion GPCR latrophilin-1/ADGRL1. iScience 3: 264–278. 

64. Huang Y.-S., N.-Y. Chiang, C.-H. Hu, et al. 2012. Activation of myeloid cell-specific 
adhesion class G protein-coupled receptor EMR2 via ligation-induced translocation and 
interaction of receptor subunits in lipid raft microdomains. Mol. Cell. Biol. 32: 1408–
1420. 

 



43 

  



44 

 

Figure legends 

Figure 1. Analysis of the CTF of LPHN1 by SDS-PAGE. A. LPHN1 isolated on an α-LTX 

column from rat brain S1 membranes was separated in an 8% SDS-gel (conditions indicated 

at the top), and immunoblotted with antibodies against the NTF or CTF (shown at the bottom). 

Inset, electrophoretic separation of the CTF into 4 bands. B. Computer-aided densitometry of 

the CTF bands. Black line, an average profile; blue bars, standard deviation. C. Immunoblotting 

of brain membranes from wild-type and LPHN1 knockout (KO) mice for neurexin Iα (NRXN1), 

NTF and CTF. Arrowhead shows a lack of CTF staining in the KO brain. The numbers of 

independent experiments (n) were: A, 5; B, 6; C, 4. 

Figure 2. The CTF of LPHN1 is phosphorylated on several sites. A. LPHN1 purified from 

S1 rat brain membranes on α-LTX was treated with neuraminidase and PNGase F or O-

glycosidase, separated by SDS-PAGE and immunoblotted using affinity-purified antibodies 

against NTF and/or CTF. Inset, extended SDS-PAGE of LPHN1 in a 4% SDS-gel, 

immunoblotted for NTF. B. α-LTX-purified LPHN1 (left) or crude S1 membranes (right) were 

incubated with alkaline phosphatase (AP), in the absence or presence of exogenous PPIs. C. 

Computer-aided densitometry of the purified LPHN1 before (control) and after (AP) treatment 

with alkaline phosphatase. D. LPHN1 purified or from rat S1 membranes was treated with 

increasing doses of AP and hydroxylamine in the order shown. Right, a larger image of the 

blots showing lanes 2 and 3 to demonstrate that dephosphorylation of CTF induced its 

aggregation, but not degradation. Detergent extract from COS7 cells transiently transfected 

with LPHN1 was used as a marker of the dephosphorylated CTF. E. Quantification of all CTF-

stained monomers and aggregates before (No AP) and after (AP) treatment with alkaline 

phosphatase. F. Purified LPHN1 treated (+) or untreated (–) with alkaline phosphatase was 

immunoblotted with antibodies against phosphorylated amino acids. G. Lanes 1, 2: 

synaptosomes (Syn) were incubated with 32P orthophosphate, solubilized and used to isolate 

LPHN1, which was separated by SDS-PAGE, transferred onto PVDF membrane and 

autoradiographed for 40 h. Lanes 3-5: the same blot as in lane 1 was immunostained for CTF 

and NTF; lane 4, long exposure. Lanes 6, 7: for comparison, purified LPHN1 was labeled with 
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125I, blotted and autoradiographed for 16 h. Lanes 2, 7: the electrophoretic samples were boiled 

for 5 min before loading on SDS-gels. Filled arrowheads, CTF and CTF dimer (2); open 

arrowhead, NTF; asterisk, a phosphorylated contaminant; arrow, aggregated CTF at gel top 

(Aggr.). H. COS7 cells transiently expressing LPHN1 (or empty vector) were [32P]-

phosphorylated, separated by SDS-PAGE, transferred onto membrane and exposed to an X-

ray film for 24 h (lanes 1, 2). The membrane was then immunostained for NTF and CTF (lanes 

3-6). 32P-labeled cellular proteins in control and LPHN1 cells are marked by asterisks. The 

immunoblot shows the uncleaved full-size LPHN1 (FS, black arrow), glycosylated (glyc.) and 

unglycosylated (unglyc.) NTF (open arrowheads) and the single CTF band (black arrowhead). 

Note that both the single CTF band and the FS LPHN1 are phosphorylated. The numbers of 

independent experiments (n) were: A, 4; B, 8/12; C, 8/12; D, 8; E, 8; F, 3; G, 3; H, 3. 

Figure 3. A map of predicted phosphorylation sites in the CTF. A. Phosphorylation sites 

predicted by high-throughput MS236 are indicated by circles, with the bar height proportional to 

the number of potential hits and the red color denoting sites with more than 5 hits. B. The 

positions and surrounding peptide sequences of the seven potentially phosphorylated residues 

(red circles in A); the predicted phosphorylated residues are encircled. The table also shows 

the number of theoretical hits and selected references reporting the predictions.  

Figure 4. The CTF is dephosphorylated by cytosolic protein phosphatases and is lost 

from NTF. A. Brain membrane fractions (P1; S1; synaptosomes, Syn; and SPM) were 

solubilized in Thesit or CHAPS (for comparison of solubilization efficiency) and immunoblotted 

for NTF and CTF. LPHN1 expressed in COS7 cells was used as a marker of NTF and CTF 

proteins (labeling as in Fig. 2H). B. Differential abundance of the basally phosphorylated CTF-

a (left) and maximally phosphorylated CTF-d (right) in respective brain membranes. t-Test with 

Bonferroni correction: *, p < 0.05. C. Inhibition of differential CTF dephosphorylation in the same 

membrane fractions by exogenous PPIs. D. CTF co-purifies with NTF on α-LTX columns from 

S1, but not from synaptosomes or SPM (two independent experiments with different exposure 

are shown). E. Quantification of CTF co-purifying with NTF on α-LTX-columns from respective 

membrane fractions. F. In the presence of exogenous PPIs, CTF co-purifies with NTF on α-

LTX columns from all membranes. G. Alkaline phosphatase-induced dephosphorylation of CTF 

in S1 blocks its co-purification with NTF. H. The CTF in solubilized synaptosomes is not 
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dephosphorylated and co-purifies with NTF on WGA-columns. I. Quantification of differential 

load affinity chromatography (example shown in Fig. 5A), in which the α-LTX column is either 

overloaded with an excess of LPHN1 in solubilized S1 membranes (>LPH) or is in excess over 

solubilized S1 (>LTX). t-Test with Bonferroni correction: ***, p < 0.001. J. Differential load α-

LTX-affinity chromatography with solubilized synaptosomes; the eluates are immunoblotted for 

NTF, CTF, and RPTPσ. The numbers of independent experiments (n) were: A, 3; B, 3; C, 6; D, 

5; E, 5; F, 6; G, 3; H, 3; I, 5; J, 3. 

Figure 5. The CTF dephosphorylation decreases its high affinity for the NTF. A. 

Differential load α-LTX-affinity chromatography of solubilized synaptosomes. CTF is 

dephosphorylated during chromatography under >LTX condition and is released from the 

column in wash fractions. Overloading α-LTX-columns with LPHN1 in solubilized membranes 

blocks CTF dephosphorylation and dissociation from NTF. B. Quantification of differentia load 

α-LTX-affinity chromatography experiments, as in A. t-Test with Bonferroni correction: **, p < 

0.01; ***, p < 0.001. C. A scheme of experiments with secondary affinity chromatography of 

purified LPHN1 on α-LTX or WGA-columns, with or without alkaline phosphatase treatment. D 

– G. LPHN1 purified on α-LTX from S1 membranes was chromatographed on a WGA-column 

(with or without alkaline phosphatase, AP) or on an α-LTX column. E, F. WGA-chromatography 

of purified LPHN1 in the absence (E) or in the presence (F) of AP. G. Secondary 

chromatography of purified LPHN1 on an α-LTX column, in the absence of AP. Note that CTF 

is not dephosphorylated in the absence of other synaptosomal proteins. H. A scheme of 

immunoprecipitation experiments with LPHN1 purified from solubilized S1, with or without 

treatment with alkaline phosphatase, as shown in I. I. LPHN1 purified from S1 on an α-LTX-

column was treated with or without alkaline phosphatase and immunoprecipitated using chicken 

anti-CTF antibodies and immunoblotted for CTF and NTF using respective rabbit antibodies. J. 

Quantification of experiments, as in I. The NTF yield in control experiments (No AP) taken as 

100%. t-Test: **, p < 0.01. The numbers of independent experiments (n) were: A, 5; B, 5; D, 21; 

E, 3; F, 3; G, 3; I, 5; J, 5. 

Figure 6. CTF dephosphorylation in cells and tissues. A. Synaptosomes were treated with 

5 nM α-LTX for 1 h with oxygenation, then solubilized, separated by SDS-PAGE and 

immunoblotted for α-LTX, NTF and CTF. B. Left: LPHN1 purified from transfected NB2a cells 
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was treated with alkaline phosphatase, separated by SDS-PAGE and immunoblotted for NTF 

and CTF. The CTF is phosphorylated, showing several differently migrating bands, which 

disappear on AP treatment. Right: LPHN1-expressing NB2a cells were incubated for 1 h with 

increasing amounts of α-LTX. α-LTX causes LPHN dephosphorylation and dimerization. C. RT-

PCR analysis of RPTPσ mRNA in LPHN1-expressing NB2a cells. β-Actin mRNA was used for 

normalization, STIM1 and STIM2 used for comparison. D. Calibration curve for sucrose density 

gradients, as shown in E, using molecular mass marker proteins: thyroglobulin, apoferritin, β-

amylase, α-LTX, aldolase, BSA. E. Rat brain membranes (S1) were solubilized in Thesit and 

centrifuged in sucrose density gradients, as described under Methods. The gradient fractions 

were separated by SDS-PAGE and immunoblotted for α-LTX (middle panel), NTF and CTF (3 

gels were used to separate each gradient). Top, untreated solubilized S1 membranes. Middle, 

solubilized S1 membranes centrifuged in the presence of a large excess of α-LTX. Bottom, 

solubilized S1 membranes centrifuged after treatment with 1% SDS and 100 mM DTT. F. 

Quantification of NTF and CTF distribution in gradient fractions (from E). Insets, LPHN1 at the 

bottom and top of gradient contains differentially phosphorylated CTF; only CTF is present in 

the top gradient fractions. The positions of predicted molecular species are shown at the top; 

the positions of molecular mass markers are shown in the bottom graph. The numbers of 

independent experiments (n) were: A, 4; B, 3; C, 4; D, 3; E, 3; F, 3. 

Figure 7. CTF phosphorylation/dephosphorylation and its role in the NTF-CTF 

interaction. LPHN1 on the cell surface is cleaved and multiply phosphorylated. Both LPHN1 

and RPTPσ are dimerized. Multimeric ligands (such as α-LTX, teneurin-2) can bring LPHN1 

and RPTPσ into close proximity, which would facilitate CTF dephosphorylation and formation 

of SDS-resistant CTF complexes, but weaken the NTF-CTF interaction. Other protein 

phosphatases may also be involved.  
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Figure 1. Analysis of the CTF of LPHN1 by SDS-PAGE. A. LPHN1 isolated on an α-LTX column from 

rat brain S1 membranes was separated in an 8% SDS-gel (conditions indicated at the top), and 

immunoblotted with antibodies against the NTF or CTF (shown at the bottom). Inset, electrophoretic 

separation of the CTF into 4 bands. B. Computer-aided densitometry of the CTF bands. Black line, an 

average profile; blue bars, standard deviation. C. Immunoblotting of brain membranes from wild-type 

and LPHN1 knockout (KO) mice for neurexin Iα (NRXN1), NTF and CTF. Arrowhead shows a lack of 

CTF staining in the KO brain. The numbers of independent experiments (n) were: A, 5; B, 6; C, 4. 
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Figure 2. The CTF of LPHN1 is phosphorylated on several sites. A. LPHN1 purified from S1 rat brain 

membranes on α-LTX was treated with neuraminidase and PNGase F or O-glycosidase, separated by SDS-PAGE 

and immunoblotted using affinity-purified antibodies against NTF and/or CTF. Inset, extended SDS-PAGE of 

LPHN1 in a 4% SDS-gel, immunoblotted for NTF. B. α-LTX-purified LPHN1 (left) or crude S1 membranes (right) 

were incubated with alkaline phosphatase (AP), in the absence or presence of exogenous PPIs. C. Computer-

aided densitometry of the purified LPHN1 before (control) and after (AP) treatment with alkaline phosphatase. D. 

LPHN1 purified or from rat S1 membranes was treated with increasing doses of AP and hydroxylamine in the order 

shown. Right, a larger image of the blots showing lanes 2 and 3 to demonstrate that dephosphorylation of CTF 

induced its aggregation, but not degradation. Detergent extract from COS7 cells transiently transfected with 

LPHN1 was used as a marker of the dephosphorylated CTF. E. Quantification of all CTF-stained monomers and 

aggregates before (No AP) and after (AP) treatment with alkaline phosphatase. F. Purified LPHN1 treated (+) or 

untreated (–) with alkaline phosphatase was immunoblotted with antibodies against phosphorylated amino acids. 

G. Lanes 1, 2: synaptosomes (Syn) were incubated with 32P orthophosphate, solubilized and used to isolate 

LPHN1, which was separated by SDS-PAGE, transferred onto PVDF membrane and autoradiographed for 40 h. 
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Lanes 3-5: the same blot as in lane 1 was immunostained for CTF and NTF; lane 4, long exposure. Lanes 6, 7: 

for comparison, purified LPHN1 was labeled with 125I, blotted and autoradiographed for 16 h. Lanes 2, 7: the 

electrophoretic samples were boiled for 5 min before loading on SDS-gels. Filled arrowheads, CTF and CTF dimer 

(2); open arrowhead, NTF; asterisk, a phosphorylated contaminant; arrow, aggregated CTF at gel top (Aggr.). H. 

COS7 cells transiently expressing LPHN1 (or empty vector) were [32P]-phosphorylated, separated by SDS-PAGE, 

transferred onto membrane and exposed to an X-ray film for 24 h (lanes 1, 2). The membrane was then 

immunostained for NTF and CTF (lanes 3-6). 32P-labeled cellular proteins in control and LPHN1 cells are marked 

by asterisks. The immunoblot shows the uncleaved full-size LPHN1 (FS, black arrow), glycosylated (glyc.) and 

unglycosylated (unglyc.) NTF (open arrowheads) and the single CTF band (black arrowhead). Note that both the 

single CTF band and the FS LPHN1 are phosphorylated. The numbers of independent experiments (n) were: A, 

4; B, 8/12; C, 8/12; D, 8; E, 8; F, 3; G, 3; H, 3. 
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Figure 3. A map of predicted phosphorylation sites in the CTF. A. Phosphorylation sites predicted by high-

throughput MS236 are indicated by circles, with the bar height proportional to the number of potential hits and the 

red color denoting sites with more than 5 hits. B. The positions and surrounding peptide sequences of the seven 

potentially phosphorylated residues (red circles in A); the predicted phosphorylated residues are encircled. The 

table also shows the number of theoretical hits and selected references reporting the predictions.  
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Figure 4. The CTF is dephosphorylated by cytosolic protein phosphatases and is lost from NTF. A. Brain 

membrane fractions (P1; S1; synaptosomes, Syn; and SPM) were solubilized in Thesit or CHAPS (for comparison 

of solubilization efficiency) and immunoblotted for NTF and CTF. LPHN1 expressed in COS7 cells was used as a 

marker of NTF and CTF proteins (labeling as in Fig. 2H). B. Differential abundance of the basally phosphorylated 

CTF-a (left) and maximally phosphorylated CTF-d (right) in respective brain membranes. t-Test with Bonferroni 

correction: *, p < 0.05. C. Inhibition of differential CTF dephosphorylation in the same membrane fractions by 

exogenous PPIs. D. CTF co-purifies with NTF on α-LTX columns from S1, but not from synaptosomes or SPM 

(two independent experiments with different exposure are shown). E. Quantification of CTF co-purifying with NTF 

on α-LTX-columns from respective membrane fractions. F. In the presence of exogenous PPIs, CTF co-purifies 

with NTF on α-LTX columns from all membranes. G. Alkaline phosphatase-induced dephosphorylation of CTF in 

S1 blocks its co-purification with NTF. H. The CTF in solubilized synaptosomes is not dephosphorylated and co-

purifies with NTF on WGA-columns. I. Quantification of differential load affinity chromatography (example shown 

in Fig. 5A), in which the α-LTX column is either overloaded with an excess of LPHN1 in solubilized S1 membranes 

(>LPH) or is in excess over solubilized S1 (>LTX). t-Test with Bonferroni correction: ***, p < 0.001. J. Differential 
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load α-LTX-affinity chromatography with solubilized synaptosomes; the eluates are immunoblotted for NTF, CTF, 

and RPTPσ. The numbers of independent experiments (n) were: A, 3; B, 3; C, 6; D, 5; E, 5; F, 6; G, 3; H, 3; I, 5; 

J, 3. 
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Figure 5. The CTF dephosphorylation decreases its high affinity for the NTF. A. Differential load α-LTX-

affinity chromatography of solubilized synaptosomes. CTF is dephosphorylated during chromatography under 

>LTX condition and is released from the column in wash fractions. Overloading α-LTX-columns with LPHN1 in 

solubilized membranes blocks CTF dephosphorylation and dissociation from NTF. B. Quantification of differentia 
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load α-LTX-affinity chromatography experiments, as in A. t-Test with Bonferroni correction: **, p < 0.01; ***, p < 

0.001. C. A scheme of experiments with secondary affinity chromatography of purified LPHN1 on α-LTX or WGA-

columns, with or without alkaline phosphatase treatment. D – G. LPHN1 purified on α-LTX from S1 membranes 

was chromatographed on a WGA-column (with or without alkaline phosphatase, AP) or on an α-LTX column. E, 

F. WGA-chromatography of purified LPHN1 in the absence (E) or in the presence (F) of AP. G. Secondary 

chromatography of purified LPHN1 on an α-LTX column, in the absence of AP. Note that CTF is not 

dephosphorylated in the absence of other synaptosomal proteins. H. A scheme of immunoprecipitation 

experiments with LPHN1 purified from solubilized S1, with or without treatment with alkaline phosphatase, as 

shown in I. I. LPHN1 purified from S1 on an α-LTX-column was treated with or without alkaline phosphatase and 

immunoprecipitated using chicken anti-CTF antibodies and immunoblotted for CTF and NTF using respective 

rabbit antibodies. J. Quantification of experiments, as in I. The NTF yield in control experiments (No AP) taken as 

100%. t-Test: **, p < 0.01. The numbers of independent experiments (n) were: A, 5; B, 5; D, 21; E, 3; F, 3; G, 3; I, 

5; J, 5. 
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Figure 6. CTF dephosphorylation in cells and tissues. A. Synaptosomes were treated with 5 nM α-LTX for 1 h 

with oxygenation, then solubilized, separated by SDS-PAGE and immunoblotted for α-LTX, NTF and CTF. B. Left: 

LPHN1 purified from transfected NB2a cells was treated with alkaline phosphatase, separated by SDS-PAGE and 

immunoblotted for NTF and CTF. The CTF is phosphorylated, showing several differently migrating bands, which 

disappear on AP treatment. Right: LPHN1-expressing NB2a cells were incubated for 1 h with increasing amounts 

of α-LTX. α-LTX causes LPHN dephosphorylation and dimerization. C. RT-PCR analysis of RPTPσ mRNA in 

LPHN1-expressing NB2a cells. β-Actin mRNA was used for normalization, STIM1 and STIM2 used for comparison. 

D. Calibration curve for sucrose density gradients, as shown in E, using molecular mass marker proteins: 

thyroglobulin, apoferritin, β-amylase, α-LTX, aldolase, BSA. E. Rat brain membranes (S1) were solubilized in 

Thesit and centrifuged in sucrose density gradients, as described under Methods. The gradient fractions were 

separated by SDS-PAGE and immunoblotted for α-LTX (middle panel), NTF and CTF (3 gels were used to 

separate each gradient). Top, untreated solubilized S1 membranes. Middle, solubilized S1 membranes centrifuged 

in the presence of a large excess of α-LTX. Bottom, solubilized S1 membranes centrifuged after treatment with 

1% SDS and 100 mM DTT. F. Quantification of NTF and CTF distribution in gradient fractions (from E). Insets, 
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LPHN1 at the bottom and top of gradient contains differentially phosphorylated CTF; only CTF is present in the 

top gradient fractions. The positions of predicted molecular species are shown at the top; the positions of molecular 

mass markers are shown in the bottom graph. The numbers of independent experiments (n) were: A, 4; B, 3; C, 

4; D, 3; E, 3; F, 3. 
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Figure 7. CTF phosphorylation/dephosphorylation and its role in the NTF-CTF interaction. LPHN1 on the 

cell surface is cleaved and multiply phosphorylated. Both LPHN1 and RPTPσ are dimerized. Multimeric ligands 

(such as α-LTX, teneurin-2) can bring LPHN1 and RPTPσ into close proximity, which would facilitate CTF 

dephosphorylation and formation of SDS-resistant CTF complexes, but weaken the NTF-CTF interaction. Other 

protein phosphatases may also be involved.  

 

 


