959 research outputs found

    Characterizing upward lightning with and without a terrestrial gamma-ray flash

    Full text link
    We compare two observations of gamma-rays before, during, and after lightning flashes initiated by upward leaders from a tower during low-altitude winter thunderstorms on the western coast of Honshu, Japan. While the two leaders appear similar, one produced a terrestrial gamma-ray flash (TGF) so bright that it paralyzed the gamma-ray detectors while it was occurring, and could be observed only via the weaker flux of neutrons created in its wake, while the other produced no detectable TGF gamma-rays at all. The ratio between the indirectly derived gamma-ray fluence for the TGF and the 95% confidence gamma-ray upper limit for the gamma-ray quiet flash is a factor of 1×1071\times10^7. With the only two observations of this type providing such dramatically different results -- a TGF probably as bright as those seen from space and a powerful upper limit -- we recognize that weak, sub-luminous TGFs in this situation are probably not common, and we quantify this conclusion. While the gamma-ray quiet flash appeared to have a faster leader and more powerful initial continuous current pulse than the flash that produced a TGF, the TGF-producing flash occurred during a weak gamma-ray "glow", while the gamma-ray quiet flash did not, implying a higher electric field aloft when the TGF was produced. We suggest that the field in the high-field region approached by a leader may be more important for whether a TGF is produced than the characteristics of the leader itself.Comment: 21 pages, 6 figures, accepted for publication by the Journal of Geophysical Research - Atmosphere

    A Novel Approach in Constraining Electron Spectra in Blazar Jets: The Case of Markarian 421

    Full text link
    We report results from the observations of the well studied TeV blazar Mrk 421 with the Swift and the Suzaku satellites in December 2008. During the observation, Mrk 421 was found in a relatively low activity state, with the corresponding 2-10 keV flux of 3×10103 \times 10^{-10} erg/s/cm^2. For the purpose of robust constraining the UV-to-X-ray emission continuum we selected only the data corresponding to truly simultaneous time intervals between Swift and Suzaku, allowing us to obtain a good-quality, broad-band spectrum despite a modest length (0.6 ksec) exposure. We analyzed the spectrum with the parametric forward-fitting SYNCHROTRON model implemented in XSPEC assuming two different representations of the underlying electron energy distribution, both well motivated by the current particle acceleration models: a power-law distribution above the minimum energy γmin\gamma_{\rm min} with an exponential cutoff at the maximum energy γmax\gamma_{\rm max}, and a modified ultra-relativistic Maxwellian with an equilibrium energy γeq\gamma_{\rm eq}. We found that the latter implies unlikely physical conditions within the blazar zone of Mrk 421. On the other hand, the exponentially moderated power-law electron distribution gives two possible sets of the model parameters: (i) flat spectrum dNe/dγγ1.91dN'_e/d\gamma \propto \gamma^{-1.91} with low minimum electron energy γmin<103\gamma_{\rm min}<10^3, and (ii) steep spectrum γ2.77\propto \gamma^{-2.77} with high minimum electron energy γmin2×104\gamma_{\rm min}\simeq 2\times10^4. We discuss different interpretations of both possibilities in the context of a diffusive acceleration of electrons at relativistic, sub- or superluminal shocks. We also comment on how exactly the gamma-ray data can be used to discriminate between the proposed different scenarios.Comment: 18 pages, 2 figures; accepted for publication in the Astrophysical Journa

    An efficient early-pooling protocol for environmental DNA metabarcoding

    Get PDF
    Environmental DNA (eDNA) metabarcoding, a method that applies high-throughput sequencing and universal primer sets to eDNA analysis, has been a promising approach for efficient, comprehensive biodiversity monitoring. However, significant money-, labor-, and time-costs are still required for performing eDNA metabarcoding. In this study, we assessed the performance of an “early-pooling” protocol (a protocol based on 1st PCR tagging) to reduce the experimental costs of library preparation for eDNA metabarcoding. Specifically, we performed three experiments to investigate the effects of 1st PCR-tagging and 2nd PCR-indexing protocols on the community composition revealed by eDNA metabarcoding, the effects of post-1st PCR exonuclease purification on tag jumping (corresponds to index hopping in 2nd PCR indexing), and the effects of the number of PCR replicates and the eDNA template volume on the number of detected OTUs. Analyses of 204 eDNA libraries from three natural aquatic ecosystems and one mock eDNA sample showed that (i) 1st PCR tagging does not cause clear biases in the outcomes of eDNA metabarcoding, (ii) post-1st PCR exonuclease purification reduces the risk of tag jumping, and (iii) increasing the eDNA template volume may increase the number of detected OTUs and reduce variations in the detected community compositions, similar to increasing the number of 1st PCR replicates. Our results show that an early-pooling protocol with post-1st PCR exonuclease purification and an increased amount of the DNA template reduces the risk of tag jumping, the costs for consumables and reagents (except for many tagged 1st PCR primers), and the handling time in library preparation, and produces similar results to a 2nd PCR-indexing protocol. Therefore, once a target metabarcoding region is selected and a set of tagged-1st PCR primers is prepared, the early-pooling protocol provides a cost, labor, and time-efficient approach for processing a large number of samples

    Photon generation by laser-Compton scattering at the KEK-ATF

    Full text link
    We performed a photon generation experiment by laser-Compton scattering at the KEK-ATF, aiming to develop a Compton based polarized positron source for linear colliders. In the experiment, laser pulses with a 357 MHz repetition rate were accumulated and their power was enhanced by up to 250 times in the Fabry-Perot optical resonant cavity. We succeeded in synchronizing the laser pulses and colliding them with the 1.3 GeV electron beam in the ATF ring while maintaining the laser pulse accumulation in the cavity. As a result, we observed 26.0 +/- 0.1 photons per electron-laser pulse crossing, which corresponds to a yield of 10^8 photons in a second.Comment: 3 pages, 5 figures, Preprint submitted to TIPP09 Proceedings in NIM

    The proton spin sum rule chiral bag prediction, an update

    Full text link
    We reevaluate a quark model prediction using the new QCD evolution function calculated to the 3 loop order and conclude that this model compares favorably with the new experimental results.Comment: 10 pages, 2 figures available by request, give fax numbe

    Restricted feedback control of one-dimensional maps

    Full text link
    Dynamical control of biological systems is often restricted by the practical constraint of unidirectional parameter perturbations. We show that such a restriction introduces surprising complexity to the stability of one-dimensional map systems and can actually improve controllability. We present experimental cardiac control results that support these analyses. Finally, we develop new control algorithms that exploit the structure of the restricted-control stability zones to automatically adapt the control feedback parameter and thereby achieve improved robustness to noise and drifting system parameters.Comment: 29 pages, 9 embedded figure
    corecore