5 research outputs found

    Recrystallization of CaCO3 submicron magnetic particles in biological media

    Get PDF
    Background and Objectives: The development of magnetic theranostics is associated with the determination of the behavior of magnetic carriers in biosimilar media. In this work, we analyze the formation of different crystalline phases from magnetic mineral submicron calcium carbonate particles during incubation under conditions of cell cultivation in vitro for 3 days. The study of mineralmagneticsubmicron particles recrystallization was analyzed by XRD and electron scanning microscopy. The shape of calcium carbonate particles begins to change from elliptical to spherical under cell culture cultivations. As the amount of magnetite nanoparticle particles in calcium carbonate increases, the recrystallization process is faster with fallout of calcite, vaterite and magnetite phases. Materials and Methods: Scanning electron microscopy, processing of results using a self-written Python code, XRDwere utilized in this study. Results: The study of the process of recrystallization of magnetic mineral particles shows has shown that increasing the content of magnetic carriers leads to accelerated recrystallization of particles with simultaneous precipitation of calcite, vaterite and magnetite phases. Conclusion: Magnetic mineral submicron calcium carbonate particles are promising targets for theranostics with the self-destruction property in biological environments

    Electrospun Separation Material for Lithium-Ion Batteries: Synthesis and Study of Physical and Electrochemical Properties

    No full text
    The paper presents a comprehensive study of the physicochemical and electrochemical properties of a new nano-microporous non-woven composite separation material for a lithium-ion battery based on nano- and microfibers of polyvinylidene fluoride (PVDF) and its copolymer with polytetrafluoroethylene (PTFE), obtained by capillary-less electrospinning. A technique for the synthesis of separation material was developed, and the composition of the polymeric solution and the electrospinning conditions were optimized to produce polymer nano-microfibers with the required physicochemical characteristics. The optimal synthesis conditions for the separation material were determined. Higher porosity of the separation material and increased wettability in the most common electrolyte compositions contribute to the higher conductivity of the obtained separation material in comparison with the widely used commercial separation materials based on polypropylene (PP). The working characteristics of the separation material were studied in laboratory half-cells with a working electrode based on Li4Ti5O12, as well as a lithium metal counter electrode and a reference electrode. Charge-discharge tests of cells were performed in a wide range of variation of currents: From 0.1 to 25 C. A decrease in the total polarization of the working electrode and an increase in the cycled capacity at comparable currents in comparison with a cell with a PP-based separator were noted. The state of the electrodes and the separator in the cell was monitored using electrochemical impedance spectroscopy: The polarization resistances of the electrodes in different frequency ranges were determined, and the diffusion coefficient of lithium ions in the Li4Ti5O12 electrode was estimated in various lithiation states and at different stages of electrochemical tests, which were in the interval of 10−10 to 10−9 cm2·s−1

    Semiconductor-to-Insulator Transition in Inter-Electrode Bridge-like Ensembles of Anatase Nanoparticles under a Long-Term Action of the Direct Current

    No full text
    The results of experimental studies of ohmic conductivity degradation in the ensembles of nanostructured anatase bridges under a long-term effect of direct current are presented. Stochastic sets of partially conducting inter-electrode bridges consisting of close-packed anatase nanoparticles were formed by means of the seeding particles from drying aqueous suspensions on the surfaces of silica substrates with interdigital platinum electrodes. Multiple-run experiments conducted at room temperature have shown that ohmic conductivity degradation in these systems is irreversible. It is presumably due to the accumulated capture of conduction electrons by deep traps in anatase nanoparticles. The scaling analysis of voltage drops across the samples at the final stage of degradation gives a critical exponent for ohmic conductivity as ≈1.597. This value satisfactorily agrees with the reported model data for percolation systems. At an early stage of degradation, the spectral density of conduction current fluctuations observed within the frequency range of 0.01–1 Hz decreases approximately as 1/ω, while near the percolation threshold, the decreasing trend changes to ≈1/ω2. This transition is interpreted in terms of the increasing contribution of blockages and subsequent avalanche-like breakdowns of part of the local conduction channels in the bridges into electron transport near the percolation threshold
    corecore