10 research outputs found

    A Review of ICD Anti-Tachycardia Therapy Programming with Generic Programming for Primary and Secondary Prevention

    Get PDF
    Intracardiac defibrillator plays a pivotal role in preventing sudden cardiac death; however, inappropriate shock delivery remains an important source of morbidity and mortality. Advancements in device technology along with various shock reduction strategies play a key role in reducing inappropriate and unnecessary shocks. Anti-tachycardia pacing (ATP) is the first-line therapy prior to shock delivery. Several trials have validated the efficacy of ATP for both slow and fast ventricular tachycardia without significant increase in occurrence of arrhythmia-related syncope. In addition, trials also support that therapy for non-sustained tachycardia can be prevented by higher programmed zones and prolonged intervals to detect without higher risk of syncope. With this perspective, authors employ a customized programming for both primary and secondary prevention to reduce inappropriate therapies or unnecessary therapies, in particular, progression to shock but allow for spontaneous termination at slower ventricular tachycardia rates. The programming was instituted at the time of device implantation or at follow up

    Insight into coronary artery ectasia

    No full text
    Background: Coronary artery ectasia (CAE) is defined as a diffuse dilatation of the epicardial coronary arteries exceeding 1.5 folds the diameter of the normal adjacent arterial segment and/ or the remaining non-dilated part of the same artery. (1) The incidence of CAE has been variably reported between different nations and ranges between 1.4 -10 % (2-5). This wide range of variability is related to many factors including diverse definition of CAE, geographical distribution, association with other conditions (i.e. inflammatory, congenital or atherosclerosis) hence the existent uncertainty about disease burden and prevalence. (6) The main pathophysiology of CAE is initially understood to be part of atherosclerosis, (3) yet others reported the non-atherosclerotic nature of the disease. (2,7) The exact disease pathophysiology, prognosis and clinical outcome are not well studied; particularly the isolated, non-atherosclerotic, form of the disease has not been fully determined nor well identified.   Methods: In paper 1, we examined the clinical presentation, prevalence and cardiovascular risk profile of the CAE patients in acute myocardial infarction (MI). We investigated the inflammatory response and short-term outcome in CAE patients of 3,321 acute consecutive MI patients who underwent primary PCI in two different centres in the UK (Royal Free Hospital, London and Norfolk, and Norwich University Hospital) between January 2009 and August 2012. In paper 2, we studied the personalised lipid profile and immune-inflammatory response in CAE patients from two different destinations (16 patients, mean age 64.9 ± 7.3 years, 6 female)  Umea, Sweden and Letterkenny, Ireland. The lipidomic profile was compared with 26 control group (mean age 59.2 ± 6.6, 7 female) with normal coronary arteries. In paper 3, the plasma levels of 16 CAE (mean age 64.9 ± 7.3 years, 6 female) were compared with 69 age and gender matched (mean age 64.5 ± 8.7 years, 41 female) subjects with evidence of coronary artery disease and 140 controls with normal coronary arteries (mean age 58.6 ± 4.1 years, 81 female) in order to determine differences in inflammatory markers and cytokines, specific for CAE. In paper 4, we investigated long term follow up data of CAE patients without atherosclerotic burden. This represents follow up data of 66 patients with CAE, among 16,464 patients, who underwent diagnostic coronary angiography in Umea, Sweden and Letterkenny university Hospital, Ireland between 2003 and 2009. Of the 66 patients, long-term follow up (mean 11.3 ± 1.6 years) data was complete in 41 patients (age 66 ± 9 years), 12 Female. All hospital readmissions with Major Acute Cardiac Events (MACE) including mortality and morbidity and hospital readmissions for acute coronary syndrome (ACS) were compared with gender matched 41 controls. No subject had >20% coronary stenosis in any coronary branch.   Results: Paper 1:  The prevalence of CAE with acute MI was 2.7%. Apart from diabetes mellitus (DM) that was significantly less common in the CAE group (p=0.02), the other conventional cardiovascular risk factors were similar between ectatic and non-ectatic coronary arteries. The RCA and LCx were predominantly involved in patients with CAE (p=0.001 and 0.0001, respectively). CRP was higher (p=0.006) in CAE, but both WCC, neutrophil and neutrophil/lymphocyte ratio (N/L ratio) was lower (p = 0.002, 0.002 and 0.032). The short-term follow-up of 2 years showed no relationship between the inflammatory markers and MACE [(8/28, 28.6%) CAE vs. (13/60, 21.7%) without CAE, (p = 0.42)]. Paper 2: We identified 65 different metabolites between CAE group and controls, 27 of them were identifiable using metabolomics library software (15 were fully identified and 12 were identified through the size of the side chains). Sixteen species of phosphatidylcholines (PC); and 11 sphyngomyelins (SM) species had significantly lower intensities in patients with CAE. Paper 3: Systemic levels of IFN-γ, TNF-α, IL-1β, IL-6 and IL-8 were significantly higher in the CAE group compared to the CAD group (p = 0.006, 0.001, 0.001, 0.046 and 0.009, respectively) and the control group (p = 0.032, 0.002, 0.001, 0.049 and 0.007 in the same order), while the levels of IL-2 and IL-4 were lower (P < 0.001 for both) compared to the CAD and the control group. No differences were detected in the systemic levels of cytokines IL-10, IL-12P “subunits IL-12 and IL-23”, and IL-13 between the two patient groups Paper 4: While CAE patients were slightly older, they had longer follow up period (p<0.001) than controls. The overall mortality in the CAE group was higher (p<0.001) and similarly was CV mortality (p<0.03) compared with controls. MACE was similar in both groups (p=0.18). More patients smoked (p<0.001) and have family history for CAD (p<0.02) than controls but these variables were not different between survivals (36 patients) and non-survivors (5 patients). Females had more MACE than males (p<0.03). Finally, all non-survivors and 12/36 survivors had smoked and had dyslipidemia.   Conclusion: Coronary artery ectasia, despite of common association with atherosclerosis, had a lower disease prevalence and dysregulated lipid metabolic profile than atherosclerosis. The pro-systemic inflammatory response in CAE is also different from atherosclerosis with different Cytokines milieu. In the context of CAE with acute coronary syndrome with obstructive atherosclerotic CAD, the management options should follow the standard guidelines for revascularization. CAE may lead to exaggerated inflammatory response in acute settings but the short-term outcome is similar to non-ectatic obstructive CAD. However, long term follow up data showed higher mortalities and hospital readmissions, yet no difference in MACE

    A Novel Approach to a Case of Stent Embolization during a Primary PCI

    No full text
    A 60 year old smoker male presented with acute anterior ST elevation Myocardial Infarction (STEMI) and underwent primary percutaneous coronary intervention (PCI). Thrombus aspiration to a totally occluded proximal LAD (Left Anterior Descending artery)/D1 (first diagonal branch) revealed complex bifurcation disease. PCI complicated by unexpected stent embolization to first obtuse marginal (OM1) branch. After successful revascularization to the D1 branch, different approaches initially failed to retrieve the embolised stent in the OM1 branch. Finally the stent was successfully retrieved using a Filter Wire catheter. To our knowledge this is the first case to retrieve an embolised stent using the filter wire

    Double anomalies: Brugada syndrome presenting with a persistent left superior vena cava

    No full text
    Objective: Rare co-existance of disease or pathology Background: The presentation of Brugada syndrome (BrS) with a persistent left superior vena cava (PLSVC) is expected to be a rare entity. It is unknown if this venous anomaly is linked to the arrhythmogenesis seen in BrS, or it is coincidental. This case describes a clinical presentation of the 2, in tandem, and displays the anomaly in association with BrS. Case Report: A 54-year-old female presented to the Emergency Department with non-prodromal syncope. This was on a background of a number of similar episodes in the past, and a current suspected viral illness comprising fever and diarrhea. Her resting electrocardiogram was suggestive of BrS. The later was confirmed with an ajmaline provocation test after ECG normalization in the subsequent 24 hours post admission. Pre-intracardiac defibrillator (ICD) procedure imaging displayed the PLSVC. An ICD was implanted, and the advancement of the guidewires displayed the venous anomaly. Post-procedure echocardiography confirmed appropriate positioning of the leads. The patient recovered well and is currently symptom free. Conclusions: PLSVC presenting with BrS is a rare occurrence. It is unknown whether or not the PLSVC and BrS are linked in their presentation, or merely a coincidence</p

    Coronary Artery Ectasia: Review of the Non-Atherosclerotic Molecular and Pathophysiologic Concepts

    No full text
    Coronary artery ectasia (CAE) is frequently encountered in clinical practice, conjointly with atherosclerotic CAD (CAD). Given the overlapping cardiovascular risk factors for patients with concomitant CAE and atherosclerotic CAD, a common underlying pathophysiology is often postulated. However, coronary artery ectasia may arise independently, as isolated (pure) CAE, thereby raising suspicions of an alternative mechanism. Herein, we review the existing evidence for the pathophysiology of CAE in order to help direct management strategies towards enhanced detection and treatment

    Cytokine Disturbances in Coronary Artery Ectasia Do Not Support Atherosclerosis Pathogenesis

    No full text
    BACKGROUND: Coronary artery ectasia (CAE) is a rare disorder commonly associated with additional features of atherosclerosis. In the present study, we aimed to examine the systemic immune-inflammatory response that might associate CAE. METHODS: Plasma samples were obtained from 16 patients with coronary artery ectasia (mean age 64.9 ± 7.3 years, 6 female), 69 patients with coronary artery disease (CAD) and angiographic evidence for atherosclerosis (age 64.5 ± 8.7 years, 41 female), and 140 controls (mean age 58.6 ± 4.1 years, 40 female) with normal coronary arteries. Samples were analyzed at Umeå University Biochemistry Laboratory, Sweden, using the V-PLEX Pro-Inflammatory Panel 1 (human) Kit. Statistically significant differences (p &lt; 0.05) between patient groups and controls were determined using Mann-Whitney U-tests. RESULTS: The CAE patients had significantly higher plasma levels of INF-γ, TNF-α, IL-1β, and IL-8 (p = 0.007, 0.01, 0.001, and 0.002, respectively), and lower levels of IL-2 and IL-4 (p &lt; 0.001 for both) compared to CAD patients and controls. The plasma levels of IL-10, IL-12p, and IL-13 were not different between the three groups. None of these markers could differentiate between patients with pure (n = 6) and mixed with minimal atherosclerosis (n = 10) CAE. CONCLUSIONS: These results indicate an enhanced systemic pro-inflammatory response in CAE. The profile of this response indicates activation of macrophages through a pathway and trigger different from those of atherosclerosis immune inflammatory response
    corecore