27 research outputs found

    A GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation

    Full text link
    Targeting at the development of an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite size pencil beam (FSPB) algorithm with a 3D-density correction method on GPU. This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework [Gu et al. Phys. Med. Biol. 54 6287-97, 2009]. Dosimetric evaluations against Monte Carlo dose calculations are conducted on 10 IMRT treatment plans (5 head-and-neck cases and 5 lung cases). For all cases, there is improvement with the 3D-density correction over the conventional FSPB algorithm and for most cases the improvement is significant. Regarding the efficiency, because of the appropriate arrangement of memory access and the usage of GPU intrinsic functions, the dose calculation for an IMRT plan can be accomplished well within 1 second (except for one case) with this new GPU-based FSPB algorithm. Compared to the previous GPU-based FSPB algorithm without 3D-density correction, this new algorithm, though slightly sacrificing the computational efficiency (~5-15% lower), has significantly improved the dose calculation accuracy, making it more suitable for online IMRT replanning

    Imaging performance of a dedicated radiation transparent RF coil on a 1.0 Tesla inline MRI-linac

    Get PDF
    This work describes the first imaging studies on a 1.0 Tesla inline MRI-Linac using a dedicated transmit/receive RF body coil that has been designed to be completely radio transparent and provide optimum imaging performance over a large patient opening.
 Methods: A series of experiments was performed on the MRI-Linac to investigate the performance and imaging characteristics of a new dedicated volumetric RF coil: (1) numerical electromagnetic simulations were used to measure transmit efficiency in two patient positions; (2) image quality metrics of signal-to-noise ratio (SNR), ghosting and uniformity were assessed in a large diameter phantom with no radiation beam; (3) radiation induced effects were investigated in both the raw data (k-space) and image sequences acquired with simultaneous irradiation; (4) radiation dose was measured with and without image acquisition; (5) RF heating was studied using an MR-compatible fluoroptic thermometer and; (6) the in vivo image quality and versatility of the coil was demonstrated in normal healthy subjects for both supine and standing positions.
 Results: Daily phantom measurements demonstrated excellent imaging performance with stable SNR over a period of 3 months (42.6 ± 0.9). Simultaneous irradiation produced no statistical change in image quality (p>0.74) and no interference in raw data for a 20 20 cm radiation field. The coil was found to be efficient over large volumes and negligible RF heating was observed. Volunteer scans acquired in both supine and standing positions provided artefact free images with good anatomical visualisation.
 Conclusions: The first completely radio transparent RF coil for use on a 1.0 Tesla MRI-Linac has been described. There is no impact on either the imaging or dosimetry performance with a simultaneous radiation beam. The open design enables imaging and radiotherapy guidance in a variety of positons.&#13

    GPU-accelerated automatic identification of robust beam setups for proton and carbon-ion radiotherapy

    No full text
    Abstract. We demonstrate acceleration on graphic processing units (GPU) of automatic identification of robust particle therapy beam setups, minimizing negative dosimetric effects of Bragg peak displacement caused by treatment-time patient positioning errors. Our particle therapy research toolkit, RobuR, was extended with OpenCL support and used to implement calculation on GPU of the Port Homogeneity Index, a metric scoring irradiation port robustness through analysis of tissue density patterns prior to dose optimization and computation. Results were benchmarked against an independent native CPU implementation. Numerical results were in agreement between the GPU implementation and native CPU implementation. For 10 skull base cases, the GPU-accelerated implementation was employed to select beam setups for proton and carbon ion treatment plans, which proved to be dosimetrically robust, when recomputed in presence of various simulated positioning errors. From the point of view of performance, average running time on the GPU decreased by at least one order of magnitude compared to the CPU, rendering the GPU-accelerated analysis a feasible step in a clinical treatment planning interactive session. In conclusion, selection of robust particle therapy beam setups can be effectively accelerated on a GPU and become an unintrusive part of the particle therapy treatment planning workflow. Additionally, the speed gain opens new usage scenarios, like interactive analysis manipulation (e.g. constraining of some setup) and re-execution. Finally, through OpenCL portable parallelism, the new implementation is suitable also for CPU-only use, taking advantage of multiple cores, and can potentially exploit types of accelerators other than GPUs

    Dosimetric Optimization and Commissioning of a High Field Inline MRI-Linac

    Get PDF
    © Copyright © 2020 Jelen, Dong, Begg, Roberts, Whelan, Keall and Liney. Purpose: Unique characteristics of MRI-linac systems and mutual interactions between their components pose specific challenges for their commissioning and quality assurance. The Australian MRI-linac is a prototype system which explores the inline orientation, with radiation beam parallel to the main magnetic field. The aim of this work was to commission the radiation-related aspects of this system for its application in clinical treatments. Methods: Physical alignment of the radiation beam to the magnetic field was fine-tuned and magnetic shielding of the radiation head was designed to achieve optimal beam characteristics. These steps were guided by investigative measurements of the beam properties. Subsequently, machine performance was benchmarked against the requirements of the IEC60976/77 standards. Finally, the geometric and dosimetric data was acquired, following the AAPM Task Group 106 recommendations, to characterize the beam for modeling in the treatment planning system and with Monte Carlo simulations. The magnetic field effects on the dose deposition and on the detector response have been taken into account and issues specific to the inline design have been highlighted. Results: Alignment of the radiation beam axis and the imaging isocentre within 2 mm tolerance was obtained. The system was commissioned at two source-to-isocentre distances (SIDs): 2.4 and 1.8 m. Reproducibility and proportionality of the dose monitoring system met IEC criteria at the larger SID but slightly exceeded it at the shorter SID. Profile symmetry remained under 103% for the fields up to ~34 × 34 and 21 × 21 cm2 at the larger and shorter SID, respectively. No penumbra asymmetry, characteristic for transverse systems, was observed. The electron focusing effect, which results in high entrance doses on central axis, was quantified and methods to minimize it have been investigated. Conclusion: Methods were developed and employed to investigate and quantify the dosimetric properties of an inline MRI-Linac system. The Australian MRI-linac system has been fine-tuned in terms of beam properties and commissioned, constituting a key step toward the application of inline MRI-linacs for patient treatments

    MRI-LINAC beam profile measurements using a plastic scintillation dosimeter.

    Get PDF
    © 2020 Associazione Italiana di Fisica Medica Plastic scintillation dosimeters (PSDs) possess many desirable qualities for dosimetry with LINACs. These qualities are expected to make PSDs effective for MRI-LINAC dosimetry, however little research has been conducted investigating their dosimetric performance with MRI-LINACs. In this work, an in-house PSD was used to measure 8 beam profiles with an in-line MRI-LINAC, compared with film measurements. One dimensional global gamma indices (γ) and corresponding γ pass rates were calculated to compare PSD and film profiles for the 1%/1 mm, 2%/2 mm and 3%/3 mm criterion. The mean global pass rates were 85.8%, 97.5% and 99.4% for the 1%/1 mm, 2%/2 mm and 3%/3 mm criteria, respectively. The majority of the γ failures occurred in the penumbral regions. Penumbra widths were measured to be slightly narrower with the PSD compared to film, however, the uncertainties in the measured penumbra widths brought the PSD and film penumbra widths into agreement. Differences in dose were calculated between the PSD and film, and remained within 2.2% global agreement for the central regions and 1.5% global agreement for out of field regions. These values for range of agreement were similar to the those reported in the literature for other dosimeters which are trusted for relative MRI-LINAC dosimetry

    Ion chamber magnetic field correction factors measured via microDiamond cross-calibration from a conventional linac to MRI-linac

    No full text
    Magnetic field correction factors are required for performing reference dosimetry on Magnetic Resonance Imaging Linear accelerators (MRI-linacs). Methods for measuring magnetic field correction factors usually require specialized equipment and expertise. Our work investigated the use of a microDiamond detector to cross-calibrate an ion chamber between a conventional linac and MRI-linac as a method to measure ion chamber magnetic field correction factors for the MRI-linac. Ratios of the microDiamond and ion chamber were measured on a conventional linac, parallel MRI-linac at 0 T, parallel MRI-linac at 1 T and perpendicular MRI-linac at 1.5 T. The beam quality dependence of the microDiamond was investigated by comparing the measurements on the conventional linac and parallel MRI-linac at 0 T. The magnetic field dependence of the microDiamond was investigated comparing the measurements on a parallel MRI-linac at 0 and 1 T. The ion chamber magnetic field correction factors were calculated by comparing the conventional linac and parallel MRI-linac at 1 T and the conventional linac and perpendicular MRI-linac at 1.5 T for the parallel and perpendicular factors respectively. The FC65-G and PTW30013 ion chambers were investigated. For a parallel MRI-linac, with a beam quality of (Formula presented.) = 0.632, we measured magnetic field correction factors of 0.988 ± 0.016 (k = 2) and 0.987 ± 0.016 (k = 2) for a FC65-G and PTW30013 respectively, where k is the coverage factor. For a perpendicular MRI-linac, with a beam quality of (Formula presented.) = 0.701, we measured magnetic field correction factors of 0.995 ± 0.020 (k = 2) and 0.983 ± 0.020 (k = 2) for a FC65-G and PTW30013 respectively. The results showed agreement with previously published work which used different approaches. Our work demonstrates the use of a microDiamond to calculate the ion chamber magnetic field correction factor using measurements on a conventional linac and MRI-linac. The high level of uncertainty in our results means the method at present can only be used for validation of magnetic field correction factors

    Experimental characterisation of the magnetic field correction factor, k B →, for Roos chambers in a parallel MRI-linac

    No full text
    Objective. Reference dosimetry on an MRI-linac requires a chamber specific magnetic field correction factor, kB -. This work aims to measure the correction factor for a parallel plate chamber on a parallel MRI-linac. Approach. kB→is defined as the ratio of the absorbed dose to water calibration coefficient in the presence of the magnetic field, ND,wB→relative to that under 0 T conditions, ND,w0T. kB→was measured via a ND,w transfer to a field chamber at each magnetic field strength from a chamber with known ND,w and kB -. This was achieved on the parallel MRI-linac by moving the measurement set-up between a high magnetic field strength region at the MRI-isocentre and a low magnetic field strength region at the end of the bore whilst maintaining consistent set-up and scatter conditions. Three PTW 34001 Roos chambers were investigated as well as a PTW 30013 Farmer used to validate methodology. Main Results. The beam quality used for the measurements of kB→was TPR 20/10 = 0.632. The kB→for the PTW Farmer chamber at 1 T on a parallel MRI-linac was 0.993 ± 0.013 (k = 1). The average kB→factor measured for the three Roos chambers on a 1 T parallel MRI-linac was 0.999 ± 0.014 (k = 1). Significance. The results presented are the first measurements of kB→for a Roos chamber on a parallel MRI-linac. The Roos chamber results demonstrate the potential for the chamber as a reference dosimeter in parallel MRI-linacs

    First measurements with a plastic scintillation dosimeter at the Australian MRI-LINAC

    Get PDF
    MRI-LINACs combine MRI and LINAC technologies with the potential for image guided radiation therapy with optimal soft-tissue contrast. In this work, we present the advantages and limitations of plastic scintillation dosimeters (PSDs) for relative dosimetry with MRI-LINACs. PSDs possess many desirable qualities, including magnetic field insensitivity and irradiation angle independence, which are expected to make them suitable for dosimetry with MRI-LINACs. An in-house PSD was used to measure field size output factors as well as a percent depth dose distribution and the beam quality index TPR20/10 at a [Formula: see text] cm2 field size. Measurements were repeated with a Scanditronix/Wellhofer FC65-G ionisation chamber and PTW 60019 microDiamond detector for comparison. Relative differences were calculated between the three detectors, where the mean difference in dose was 1.2% between the PSD and ionisation chamber, 1.9% between the PSD and microDiamond detector and 1.3% between the microDiamond detector and the ionisation chamber. The closeness between the three mean differences in doses suggests that PSDs are feasible for relative dosimetry with MRI-LINACs
    corecore