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Abstract

Plastic scintillation dosimeters (PSDs) possess many desirable qualities for
dosimetry with LINACs. These qualities are expected to make PSDs effective for
MRI-LINAC dosimetry, however little research has been conducted investigat-
ing their dosimetric performance with MRI-LINACs. In this work, an in-house
PSD was used to measure 8 beam profiles with an in-line MRI-LINAC, com-
pared with film measurements. One dimensional global gamma indices (γ) and
corresponding γ pass rates were calculated to compare PSD and film profiles for
the 1 %/1 mm, 2 %/2 mm and 3 %/3 mm criterion. The mean global pass rates
were 85.8 %, 97.5 % and 99.4 % for the 1 %/1 mm, 2 %/2 mm and 3 %/3 mm
criteria, respectively. The majority of the γ failures occurred in the penumbral
regions. Penumbra widths were measured to be slightly narrower with the PSD
compared to film, however, the uncertainties in the measured penumbra widths
brought the PSD and film penumbra widths into agreement. Differences in dose
were calculated between the PSD and film, and remained within 2.2 % global
agreement for the central regions and 1.5 % global agreement for out of field
regions. These values for range of agreement were similar to the those reported
in the literature for other dosimeters which are trusted for relative MRI-LINAC
dosimetry.

Keywords: MRI-LINAC, Fibre optic dosimeter, Plastic scintillator, dosimetry

1. Introduction

MRI-LINACs combine an MRI with a LINAC, where the MRI enables imag-
ing of the patients with optimal soft tissue contrast while the LINAC delivers
radiation therapy [1]. MRI-LINACs present a unique opportunity to achieve
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real-time adaptive radiation therapy and reduce the margins of treatment vol-
umes [2]. However, the MRI’s magnetic field influences the dose distributions
delivered, alters a dosimeters response and its effects can increase response un-
certainties [3]. Many dosimeters have been investigated for relative dosime-
try with MRI-LINACs including ionisation chambers, film dosimeters and solid
state dosimeters. For MRI-LINAC dosimetry, an ionisation chambers response
is dependent upon their orientation in the magnetic and radiation fields [3].
These dependences are correctable, however uncertainties can increase if devi-
ations in chamber orientation occur [3]. Film dosimeters are water equivalent,
have unmatched spatial resolution for 2D dosimetry and remain accurate for
dosimetry with MRI-LINACs [4, 5], however they exhibit small changes to their
dose response curves in the presence of magnetic fields [5]. Many solid state
dosimeters are water equivalent, however, their responses are often dependent
on their irradiation angle, which can inflate their uncertainties when applied for
LINAC and MRI-LINAC dosimetry at varying irradiation angles [6, 7].

Similar to the aforementioned dosimeters, plastic scintillation dosimeters
(PSDs) typically possess many of the desirable qualities for MRI-LINAC dosime-
try without disadvantages associated with magnetic fields. These qualities in-
clude water equivalence for photons and electrons over the MRI-LINACs thera-
peutic energy range [8, 9], non-ferromagnetic composition and a real-time, linear
response with dose[8]. Additionally, plastic scintillators typically have irradia-
tion angle independence [10], dose rate independence [10] and a response not
degraded by magnetic fields [11].

PSDs are comprised of a plastic scintillator coupled to an optical fibre [12].
An issue when using PSDs with LINACs arises with the generation of Cerenkov
radiation in the PSD’s optical fibre, occurring as a stem signal for PSDs [12].
Cerenkov radiation is generated when an electron traverses through an optical
medium at a speed greater than the local speed of light in that medium [13].
The gold standard method for Cerenkov radiation correction, known as back-
ground subtraction [12], uses an optical fibre with no scintillator (referred to
as a reference probe) to measure Cerenkov radiation only. In the background
subtraction method, the PSD and reference probe are placed against each other
and aligned to ensure that matching irradiation conditions are present between
the PSD and reference probe. Given that matching optical fibres produce equal
magnitudes of Cerenkov radiation for matching irradiation conditions, the PSD
signal is corrected through subtraction of the reference probe signal.

In previous work [14], an in-house PSD was compared with a Farmer type
ionisation chamber and a diamond detector for the measurement of output fac-
tors and a percent depth dose distribution. Disagreements between the three
detectors were reported in the work and were attributed to their significantly dif-
ferent dimensions and sensitive volume geometries. In current work, we present
MRI-LINAC beam profiles measured with an in-house PSD and compare these
profiles with those measured by radiochromic film, considered the gold standard
for beam profile measurements with an MRI-LINAC.
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2. Materials and Methods

The Australian MRI-LINAC uses an in-line setup, consisting of a 1 T open
bore magnet (Agilent, UK) and a 6 MV Linatron-MP LINAC (Varex, USA)
fitted with a Millennium 120 multi-leaf collimator (MLC)(Varian, USA). The
MRI-LINAC is setup with the photon beam aligned parallel to the magnetic
field (referred to as an in-line setup). The Australian MRI-LINAC uses a fixed
horizontal beam line, being mounted on rails to allow for changes in source-
isocentre distance (SIDs). A diagram showing the in-line setup of the Australian
MRI-LINAC is shown in Figure 1, and is described in greater detail in Keall et
al. [15] and Liney et al. [16].

Beam profiles were measured using an in-house PSD and Gafchromic EBT3
film (Ashland Inc, USA). These profiles were measured for the smallest sym-
metric, square fields achievable at SIDs of 1.869 m and 2.469 m (being 2 of 8
achievable SIDs for the Australian MRI-LINAC system), where the field sizes
were 1.9 × 1.9 cm2 at 1.869 m SID and 2.6 × 2.6 cm2 at 2.469 m SID. These
beam profiles were measured at depths of 1 cm, 5 cm, 10 cm and 20 cm for
each SID. A water tank was used to measure the beam profiles with the PSD.
The water tank had 8 mm thick perspex walls with outer dimensions of 37 × 30
× 42 cm3. A manual linear translation stage (MT-DDA, Med-Tech Inc, USA)
with minimum step length of 0.1 mm was used to control the vertical position
of the PSD. Profiles were measured with the PSD by delivering a fixed num-
ber of monitor units, recording the PSD’s integral response and translating the
PSD in 2.5 mm increments. For each position in each PSD profile, the integral
response was measured 3 times, allowing for uncertainties to be calculated. The
MRI-LINAC, water tank, translation stage and PSD are shown in Figure 1.

Each measured profile was normalised to its centre of field response, making
them relative beam profiles. Each profiles centre of field position was aligned
with the origin to minimise differences between corresponding PSD and film
profiles. The empirical penumbra model developed by Tang et al. [17] was curve
fit to the penumbra in each measured profile. Penumbra widths were calculated
by finding the penumbral positions where the relative doses were 20 % and 80
%, and then taking the difference between these 20 % and 80 % penumbral posi-
tions. Uncertainties in measured penumbra widths were determined by finding
their corresponding 95 % confidence intervals, and adding the uncertainty in
each detectors measurement position. For the PSD, the measurement position
uncertainty corresponded to half of the translation stage’s minimum step length
(0.05 mm); for film, the measurement position uncertainty was half of the pixel

width (0.16̇ mm).
Global gamma indices (γ) and corresponding pass rates were calculated to

quantify agreement between the relative PSD profiles and film profiles. The γs
and pass rates were calculated following the protocol outlined by Low et al. [18]
for dose/distance criterion of 1 %/1 mm, 2 %/2 mm and 3 %/3 mm using film
profiles as the reference datasets and PSD profiles as the evaluation dataset.
No dose thresholds or reference data interpolation techniques were used when
calculating γs and their corresponding pass rates.
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Figure 1: 3D model of the Australian MRI-LINAC with water tank, translation stage, PSD
and reference probe.

The Gafchromic EBT3 film was calibrated using an Elekta 6 MV photon
beam following the recommendations in AAPM task group report 55 [19]. Solid
water (Gammex RMI 457) was used as the phantom material for all measure-
ments with film. For measurement of the beam profiles, the films were placed
between the desired thickness of solid water to achieve the desired depth and 10
cm of solid water for back scatter. Films were scanned using an EPSON V700
Photo flat bed scanner (Epson, Japan), with a resolution of 72 dpi and 48 bit
RGB colour depth. Only the red colour channel was used when analysing the
films optical density. Each film measured profile was smoothed using a moving
average filter with a 5 pixel span.

The PSD consisted of a cylinder of BC444 plastic scintillator (Saint Gobain,
France) optically coupled to an Eska CK-40 optical fibre of 15 m length. The
plastic scintillator had a diameter of 2 mm and a length of 0.8 mm, and the
optical fibre had an inner core diameter of 0.94 mm, an outer core diameter
of 1 mm and cladding diameter of 2 mm. A reference probe was constructed
from a matching Eska CK-40 optical fibre to that of the PSD. The PSD and
reference probe were sealed with black paint to prevent background light from
entering the optical fibre. An optical fibre housing was constructed to hold the
PSD in the water tank, consisting of a 1 × 2 × 16 cm3 piece of solid water with
a 2 mm deep × 4 mm wide groove to house the PSD and reference probe. For
background subtraction, the reference probe and PSD were aligned at their tips
and placed in the housing groove with the reference probe behind the PSD from
the beam’s eye view as in Figure 2. This PSD and reference probe alignment
ensures that equivalent lengths of optical media are irradiated, and so equiv-
alent magnitudes of Cerenkov are generated in the PSD and reference probe.
The optical fibre housing was secured to the manual translation stage, as seen in
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Figure 2: 3D model showing the PSD and reference probe positioning in the water tank.
Note that the PSD is placed against the reference probe without a gap between the PSD and
reference probe. Beam profiles were measured by changing the vertical position of the PSD
in the water tank.

Figure 2. Two matching RCA-4526 photomultiplier tubes (PMTs) and a digital
oscilloscope (PicoScope PS6404D, PicoTech) were used to simultaneously mea-
sure and record the PSD’s and reference probe’s optical signals as voltage-time
waveforms. The two PMTs were set to AC coupling and the digital oscilloscope
sampled the PSD and reference probe waveforms at a rate of 625 MHz. The
two PMTs were cross calibrated to ensure that the Cerenkov radiation signal
measured using one PMT was equivalent to the Cerenkov radiation signal that
would be measured using the other PMT.

A scintillating fibre was constructed, such that it would be irradiated by
the LINACs beam to produce a triggering signal for the digital oscilloscope
as there was no triggering signal available from the LINAC. This scintillating
fibre consisted of a 15 m length of BCF-60 scintillating fibre (Saint Gobain,
France) with a core diameter of 1 mm and a cladding diameter of 2 mm. An
aluminium reflector was attached to the end of the scintillating fibre to increase
the collected scintillation signal and stop background light from entering the
scintillating fibre. The scintillating fibre was secured to the MLC assembly,
upstream from the MLC and at a position not intersecting the field shaped by
the MLCs. A silicon photomultiplier (SensL MiniSM-30035, Ireland) was used
to measure the scintillating fibre’s optical signal, with the silicon photomultiplier
being connected to the digital oscilloscope for triggering.
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3. Results

The beam profiles measured at 1.869 m SID are shown in Figure 3. Each
relative beam profile at 1 cm, 5 cm, 10 cm and 20 cm was scaled by the PSD’s
relative central axis response for their corresponding depths at 1.869 m SID
(normalised at 5 cm depth). Linear interpolation was used to sample each film
profile at positions where corresponding PSD measurements were made, and
relative differences were calculated between corresponding PSD and interpolated
film profiles. The film and PSD profiles were within agreement when the calcu-
lated relative differences and their corresponding uncertainties intercepted zero.
The PSD and film profiles were within agreement for positions within the cen-
tral 80 % of the beams width (referred to as the central region). The penumbral
regions were not in agreement due to the high spatial dose gradient about the
penumbral region of the profile. The out of field regions for the PSD and film
profiles were generally within agreement, except for the profile at 10 cm depth
about the -15 mm position. As this was the only case of disagreement for out of
field regions, and was not reproduced in any other profiles, it is expected that
this disagreement was a statistical fluctuation. In general, the uncertainty in
the relative difference increased as relative dose decreased; this was due to a
decrease in the signal to noise ratio as relative dose decreased.

The beam profiles measured at 2.469 m SID are presented in Figure 4. As
in Figure 3, each beam was scaled by the corresponding PSD’s relative central
axis response for the depths of 1 cm, 5 cm, 10 cm and 20 cm at 2.469 m SID;
as in Figure 3, the process of scaling by central axis responses was done to
minimise profile overlap. The central regions of the PSD and film beam profiles
were in good agreement, where the penumbral regions for PSD and film were
not in agreement. In the relative difference plot, the out of field regions were in
agreement except for the +22 mm position. This disagreement is not observed
in any other out of field regions and so is attributed to statistical fluctuation.

One dimensional global γs were calculated for the 1 %/1 mm, 2 %/2 mm and
3 %/3 mm criterion with no dose threshold. Each beam profile was normalised
to its centre of field response, with all profiles being treated as relative beam
profiles for γ analysis. The calculated γ for each criterion are shown in Figure
5. From the calculated γ in Figure 5, all the PSD measurements lied within the
3 %/3 mm range, except for the -8 mm position for the 1 cm depth, 1.869 m
SID profile. For the γ with 2 %/2 mm criterion, the only PSD positions where
γ exceeded 1 occurred in the penumbral region, including the aforementioned
-8 mm position for the 1 cm depth, 1.869 m SID profiles. For the 1 %/1 mm
criterion, the majority of γ exceeding 1 occurred in the penumbral regions. The
central regions of the profiles also had a fraction of γ exceeding 1, however the
distribution of these γ exceeding 1 is apparently random and occur due to a com-
bination of spatial variations in the film’s response and statistical fluctuations
in the PSD’s response.

The γs pass rates are presented in Table 1, with the intention of providing
statistics for ranges of agreement between the PSD and film profiles. It should
be noted that each PSD profile at 1 cm, 5 cm and 10 cm depth had 21 measure-
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Figure 3: Beam profiles for approximately 1.9 × 1.9 cm2 field size at isocentre (10 cm depth)
and 1.869 m SID (top), and the corresponding relative differences between the PSD and film
profiles (bottom). Each PSD and film relative beam profile has been scaled by the PSD’s
central axis response (normalised to the 5 cm depth response) at its corresponding depth
and field size to minimise the overlap of profiles, however, all beam profiles are treated as
relative beam profiles. In the beam profile (top), error bars are twice the combined error in
the PSD’s measurements, equivalent to the 95 % confidence interval for each measurement and
the shaded regions are the uncertainties in the films measurements. In the relative difference
plots (bottom), the blue, red, green and black series correspond to the 1 cm, 5 cm, 10 cm and
20 cm depths as in the beam profile plots, respectively. Error bars in the relative difference
plots were the combination of the PSD’s and film’s relative errors.

ment positions, where the 20 cm depths had 19 measurement positions; a failure
in γ at each position corresponds to an approximate pass rate reduction of 5 %.
For the 1 %/1 mm pass rates, pass rated tended to improve as depth increased,
however this trend was statistically insignificant. Global pass rates were accept-
able for the 2 %/2 mm and 3 %/3 mm criterion, however unacceptable for 1
%/1 mm.

The penumbra widths measured from each relative beam profile are pre-
sented in Table 1. Penumbra widths measured at the 1.869 m SID were on
average (0.2 ± 0.6) mm narrower when measured with the PSD compared to
those measured with film. Similarly, the penumbra widths measured at the
2.469 m SID were on average (0.4 ± 0.8) mm narrower for the PSD compared
to those measured with film. The perceived narrowing of penumbras when
comparing the PSD with film is not statistically significant per their associated
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Figure 4: Beam profiles for approximately 2.6 × 2.6 cm2 field size at isocentre (10 cm depth)
(top), and relative differences between the PSD and film (bottom). For the EBT3 film and
in-house PSD, each relative beam profile was scaled by the PDD value at its corresponding
depth, normalised to the centre of field response at 5 cm depth. Error bars and shaded
regions in the beam profile correspond to the uncertainty in the PSD and film, respectively,
as in Figure 3. As in Figure 3, the blue, red, green and black series in the relative difference
plot corresponds to the 1 cm, 5 cm, 10 cm and 20 cm depths, respectively. Error bars in the
relative difference plots were the combination of the PSD’s and film’s relative errors.

uncertainties. The 5 pixel wide moving average filter used to smooth the film
profiles decreased the spatial resolution in the film profiles and widened the
film’s penumbras. When repeating the analysis with no film smoothing, the re-
sultant film penumbras were on average narrowed by 0.2 mm. Each uncertainty
in the film penumbra width varied between cases where smoothing was used and
no smoothing was used, however, the global average of the films uncertainty in
penumbra width had negligible variance.

4. Discussion

In the film profiles, there are spatial response fluctuations in the central re-
gions as can be seen in Figures 3 and 4. These fluctuations are most apparent
in the 1 cm and 5 cm depth profiles due to the scaling applied, however fluc-
tuations are also present in the 10 cm and 20 cm depth profiles in Figures 3
and 4. In a study investigating sources of uncertainty when using EBT3 films,
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Figure 5: γs calculated at each position for the 1 %/1 mm criterion (top), 2 %/2 mm criterion
(middle) and 3 %/3 mm criterion (bottom) to show any spatial spatial dependences.

measurements of absorbed dose using were found to have a relative uncertainty
of 3.2 % when only the red colour channel was used [20]. Film uniformity and
reproducibility contributed 0.2 % and 0.2 %, respectively; in comparison, the
response fitting procedure and dose resolution of the system contributed 2.6 %
and 1.8 % [20]. In the presented film results, the most significant spatial dose
fluctuations occur as under-responses at positions between +5 mm and +10
mm. This reproducible under-response is attributed to inhomogeneities in the
film, however these fluctuations do not exceed film’s 3.2 % relative uncertainty
in absorbed dose. Other sources of uncertainty are expected to have other ef-
fects; artefacts related to reproducibility would result in random fluctuations,
and fitting of responses to dose calibration curves would produce symmetric
under-responses.

A potential source of error when using PMTs as the photodetector for PSD
measurements can occur as the PMTs undergo temperature changes. A change
in PMT temperature causes a change in the PMT’s gain; for background sub-
traction, the ratio of each PMT gains is required. Through their operation,
PMTs inevitably produce waste heat and their temperature fluctuates, which
can be problematic for the background subtraction method when measurements
are taken over a long period of time. Methods of Cerenkov radiation correction
that apply a different type of photodetector obviate this potential source of er-
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Profile at 1 %/1 mm 2 % / 2 mm 3 %/3 mm

SID, depth pass rate pass rate pass rate

1.869 m, 1 cm 81.0 % 95.2 % 95.2 %

1.869 m, 5 cm 85.7 % 95.2 % 100 %

1.869 m, 10 cm 90.5 % 95.2 % 100 %

1.869 m, 20 cm 88.2 % 94.1 % 100 %

2.469 m, 1 cm 81.0 % 100 % 100 %

2.469 m, 5 cm 81.0 % 100 % 100 %

2.469 m, 10 cm 90.5 % 100 % 100 %

2.469 m, 20 cm 88.9 % 100 % 100 %

Global mean 85.8 % 97.5 % 99.4 %

Table 1: γ pass rates calculated using the PSD profiles as the evaluation datasets and film
profiles as the reference datasets.

ror; many other research groups use alternative methods of Cerenkov radiation
correction, as well as the Exradin W1 and W2 commercial dosimetry systems.
Additionally, PMTs with temperature control functionality obviate any prob-
lems with changes in gain. In this work the PMT gain drift problem could
not be explicitly avoided as the PMTs lacked temperature control functionality;
instead, a simple correction method was used. In this approach, several gain
calibration measurements were taken throughout the duration of the measure-
ments. Each time of calibration was recorded, as well as each time of profile
measurement. The gain drift effects were corrected using linear interpolation to
find the time-interpolated gain calibration factors for each time of measurement.

The PSD’s sensitive volume was defined by the acceptance light cone of the
plastic scintillator (when coupled to the optical fibre). For the setup used (as
shown in Figure 2), the effective spatial resolution was the maximum diameter
of the acceptance light cone; this was calculated to be 1.8 mm. Film measured
penumbra widths were expected to be slightly narrower than PSD penumbra
widths as the film’s spatial resolution was higher than the PSD’s. However, the
PSD’s measured penumbra widths were on average 0.3 mm narrower than film’s
penumbra widths, typically with uncertainties larger than the observed differ-
ence in penumbra widths. When the full width at half maximums (FWHMs)
were found from the penumbral fitting models, the PSD measured profiles were
an average of (0.6 ± 0.9) mm narrower than film at 1.869 m SID and (0.4 ±
0.8) mm narrower than film at 2.469 m SID. In general, the uncertainties when
comparing the penumbra widths and FWHMs were larger than the combined
uncertainties in these differences, bringing these quantities into agreement. For
the PSD and film, the uncertainty in each measurement position was 0.05 mm
and 0.16̇ mm, respectively, arising from the 0.1 mm step size of the translation
stage and 0.3̇ mm pixel size when scanning film. The other contribution to un-
certainties arose with the standard error from the fitted models when measuring
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Profile at Left penumbra (mm) Right penumbra (mm)

SID, depth Film PSD Film PSD

1.869 m, 1 cm 3.4 ± 0.4 3.0 ± 0.1 3.5 ± 0.2 3.1 ± 0.1

1.869 m, 5 cm 3.6 ± 0.3 3.5 ± 0.1 3.6 ± 1.0 3.4 ± 0.1

1.869 m, 10 cm 3.7 ± 0.3 3.2 ± 0.8 3.8 ± 0.3 3.7 ± 0.1

1.869 m, 20 cm 3.8 ± 0.3 3.7 ± 0.1 3.9 ± 0.2 3.6 ± 0.2

2.469 m, 1 cm 4.0 ± 0.4 3.4 ± 0.2 4.2 ± 0.4 3.5 ± 0.2

2.469 m, 5 cm 4.2 ± 0.4 3.6 ± 0.1 4.6 ± 0.3 4.0 ± 0.2

2.469 m, 10 cm 4.4 ± 0.3 4.1 ± 0.4 4.6 ± 0.9 4.4 ± 0.3

2.469 m, 20 cm 4.6 ± 0.7 4.7 ± 0.1 4.6 ± 0.5 4.2 ± 0.7

Table 2: Penumbra widths measured from PSD and film profiles. Uncertainties are a combi-
nation of the uncertainty in each detectors measurement position (0.05 mm for the PSD and
0.16̇ mm for the film), and the standard error in the penumbra width (calculated by using the
standard error of regression from the curve fitting process to find the 95 % confidence interval
in the penumbra widths.)

penumbra width and FWHM. The perceived differences between the PSD and
film penumbra widths were statistically insignificant considering the uncertain-
ties in these differences.

With regards to the PSD used in this work, the cylindrical sensitive volume
had a diameter of 2 mm, a length of 0.8 mm and a density of 1.032 g/cm3. The
PSD’s small sensitive volume size and density close to water make the effective
point of measurement (EPOM) of the PSD the centre of the scintillator cylinder
(for no magnetic field). A detector’s EPOM shifts in the presence of strong mag-
netic fields. This shift is dependent on magnetic field strength [21], MRI-LINAC
orientation [22], a detector’s sensitive volume density [21] and any casing around
the sensitive volume [3]. From a Monte Carlo study by Looe et al. [21], detec-
tors with sensitive volume densities matching water were found to have their
EPOM shift match the shift in absorbed dose distributions deposited in water,
irrespective of magnetic field strength. With regards to MRI-LINAC orienta-
tion, EPOM shifts laterally and depth-wise for perpendicular orientations [3],
but EPOM shifts were limited to depth-wise shifts, and magnitudes of EPOM
shift were significantly reduced for in-line orientations [22]. With the consid-
erations that the PSD’s sensitive volume’s size is small, its density is close to
water and the Australian MRI-LINAC’s in-line orientation, the shift in EPOM
was expected to be of negligible effect for the setup used. For PSDs with small
sensitive volumes, it is expected that the EPOM shift would also be practically
negligible for other PSDs for MRI-LINACs with in-line orientations. For per-
pendicular MRI-LINAC orientations, it is expected that the EPOM shift would
be negligible due to the typically small volumes of PSDs and their near-water
densities.

In the γ plots in Figure 5, many of the observed γ exceeding 1 occurred in
penumbra regions of the beam profiles. Film penumbra widths ranged between
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3.4 mm and 4.5 mm; in the penumbral region, this corresponds to a minimum
change of 4.6 % relative dose per pixel. This makes some PSD penumbral
measurements fail, even though some of these measurements appear to overlap
with corresponding film profiles. For the 2 %/2 mm and 3 %/3 mm criterion,
the positions with γ exceeding 1 would likely pass if the scanning resolution
were higher. For the 1 %/1 mm criterion, there are γ exceeding 1 in the central
and penumbral regions. Improvements could be expected for the 1 %/1 mm
criterion penumbral regions if a higher scanning resolution was used. However,
with the observed, yet statistically insignificant differences in penumbra widths
and FWHM, the penumbral regions would likely still have some γ exceeding 1
in the penumbral regions at the 1 %/1 mm tolerance.

Many other dosimeters have been investigated for their efficacy in beam
profile measurements. Chen et al. verified an MRI-LINAC’s treatment planning
system (TPS) using a micro-ionisation chamber, a Farmer-ionisation chambers,
Gafchromic EBT3 film and a PTW60019 microDiamond detector [23]. For beam
profiles, these detectors were found to be within a 1 % global agreement with the
TPS for out of field regions, and 2 % global agreement for the central regions
[23]. For the same conditions, when calculating dose differences between the
PSD and film profiles as relative beam profiles, the PSD and film were found
to be within 2.2 % global agreement for the central regions and 1.5 % global
agreement for out of field regions. These statistics suggest that the in-house
PSD’s performance is similar to many other commercially available dosimeters
used to measure MRI-LINAC beam profiles.

The work presented in this manuscript has demonstrated that the in-house
PSD’s performance was comparable to other commercially available dosimeters.
However, as only one in-house PSD was used in this work, the translation of
these results to other PSDs may be problematic as there exists plastic scintil-
lator materials that do not possess all aforementioned desirable properties for
dosimetry. For example, studies have shown that their PSDs investigated had
negligible temperature dependences [8, 10]; however, other scintillator materi-
als have been shown to have non-negligible temperature dependences [24, 25].
In previous work, an in-house PSD using BC444 (Saint Gobain, France) as the
scintillator material, was used to measure output factors at the Australian MRI-
LINAC. No field size dependences were observed for the field sizes ranging be-
tween 2.6 × 2.6 cm2 and 21.0 × 21.0 cm2 [14]; however, Exradin W1 (Standard
Imaging, USA ) exhibited field size dependences in the presence of a magnetic
field when field sizes were greater than 10.5 × 10.5 cm2 [26]. With other PSD’s
desirable properties verified, these results can be expected to translate to other
PSDs.

5. Conclusion

An in-house PSD and Gafchromic EBT3 film were applied to measure beam
profiles with an in-line MRI-LINAC. Mean global γ pass rates were calculated
using the film as a reference for the PSD. Pass rates were 85.8 %, 97.5 % and
99.4 % for the 1 %/1 mm, 2 %/2 mm and 3 %/3 mm criteria, respectively. The
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majority of the γ failures occurred in the penumbral regions, which were par-
tially exacerbated by the 72 dpi spatial sampling during film scanning. Penum-
bra widths were measured to be slightly narrower with the PSD compared to
film, however, their uncertainties made the narrowing statistically insignificant.
Differences in dose between the PSD and film remained within 2.2 % global
agreement for the central regions and 1.5 % global agreement for out of field re-
gions. These statistics for difference in dose are similar to the those reported in
the literature for other dosimeters that are trusted for MRI-LINAC dosimetry.
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